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 Optimization is essential for improving the performance of control systems, 

particularly in scenarios that involve complex, non-linear, and dynamic behaviors. 

This paper introduces a new hybrid optimization framework that merges Particle 

Swarm Optimization (PSO) with the Greater Cane Rat Algorithm (GCRA), which 

we call the PSO-GCRA framework. This hybrid approach takes advantage of PSO's 

global exploration capabilities and GCRA's local refinement strengths to overcome 

the shortcomings of each algorithm, such as premature convergence and ineffective 

local searches. We apply the proposed framework to a real-world load forecasting 

challenge using data from the Australian Energy Market Operator (AEMO). The 

PSO-GCRA framework functions in two sequential phases: first, PSO conducts a 

global search to explore the solution space, and then GCRA fine-tunes the solutions 

through mutation and crossover operations, ensuring convergence to high-quality 

optima. We evaluate the performance of this framework against benchmark 

methods, including EMD-SVR-PSO, FS-TSFE-CBSSO, VMD-FFT-IOSVR, and 

DCP-SVM-WO. Comprehensive experiments are carried out using metrics such as 

Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE), Root Mean 

Squared Error (RMSE), and convergence rate.  The proposed PSO-GCRA 

framework achieves a MAPE of 2.05% and an RMSE of 3.91, outperforming 

benchmark methods, such as EMD-SVR-PSO (MAPE: 2.85%, RMSE: 4.49) and 

FS-TSFE-CBSSO (MAPE: 2.98%, RMSE: 4.69), in terms of accuracy, stability, 

and convergence efficiency. Comprehensive experiments were conducted using 

Australian Energy Market Operator (AEMO) data, with specific attention to 

normalization, parameter tuning, and iterative evaluations to ensure reliability and 

reproducibility. 
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1. Introduction 

The performance of a control system [1], [2], whose efficiency can be enhanced by carefully 

choosing the control parameters through a suitable optimization technique [3], [4], is of prime 

importance in practical applications, as these chosen parameters affect not only the operation of the 

system concerning stability but also the economy and the issue of minimizing pollution-related 

problems [5]. These synthesized control parameters for the specified objective are the result of the 

optimization problem, which generally suffers from stagnation and local convergence issues; the 

development of a hybrid algorithm becomes essential for addressing optimization issues [6], [7]. The 

concept of hybridization of algorithms has been encouraged by many researchers and has developed 

because of the drawbacks faced by traditional algorithms in solving complex optimization problems 

[8]. Nowadays, control systems are more sophisticated and contain uncertain characteristics; only 

advanced optimization techniques can be used to optimize the performance of advanced control 

systems [9], [10]. Many optimization algorithms can solve the problems of optimization; one of the 

popular algorithms used frequently needs to be fine-tuned with the best-tuned parameters, so the issues 

of fine-tuning hinder the accuracy of optimization [11], [12]. Therefore, optimization techniques may 

have been developed by blending several algorithms to strengthen optimization. Hybrid optimization 

tools have many benefits for better optimization of the control parameters of the practical control 

system [13], [14]. However, using the hybrid optimization techniques, this study's main concern is to 

improve the performance of the control system regarding regulating variables, actuator variables, 

sensor variables, and interconnected variables [15]-[17]. 

The optimization of control systems is crucial for ensuring the efficiency [18], [19], stability, and 

reliability of complex systems in various fields, such as robotics, smart grids, and industrial 

automation [20], [21]. These control systems often deal with highly dynamic and non-linear processes, 

and achieving optimal performance requires advanced algorithms that can balance multiple objectives. 

Modern trends in optimization have contributed to the creation of new hybrid algorithms, which utilize 

various method facets to help by neglecting traditional algorithms [22], [23]. PSO algorithm worth 

noting is metaheuristic-optimization, since its low complexity, easy to scale and useful in the solution 

of a non-linear problem. But PSO has its drawbacks, such as premature convergence, and weakness 

in local search strategies, especially in high-dimensional or multimodal optimization problems. To 

successfully counter such Factors, The Social Behavior of Cane Rats Gives Birth to the Greater Cane 

Rat Algorithm (GCRA), which is Understanding the popular methods of optimization. GCRA is very 

effective in local search and adaptive mechanisms, thus augmenting the functionality of PSO 

significantly. 

The Particle Swarm Optimization algorithm is used for solving continuous non-linear 

optimization problems and non-differentiable functions, like the Genetic Algorithm [24], [25]. An 

improved Particle Swarm Optimization algorithm was utilized to optimize electricity production with 

a power system [26], [27]. It was further improved by obtaining a better solution to reduce fuel and 

maintenance costs. A recent optimization algorithm called the Greater Cane Rat Algorithm is used for 

optimization and often integrates with other hybrid and intelligent-approach algorithms to outperform 

results obtained from other studies [28]. The recent Particle Swarm Optimization and Greater Cane 

ratio algorithm-related studies have shown that hybrid optimization algorithms can improve the 

performance and settings of the system changes in previously published research. These researchers 

did not use forecasting, which deviates from previous studies and conventional Particle Swarm 

Optimization. Although a substantial amount of research has been conducted on Particle Swarm 

Optimization, it has been stated that although it can solve various problems and consider the hybrid 

Particle Swarm and optimization applications in real-life scenarios, a partial search has yet to be 

proposed. It sets up a profile background of the necessary parallel computing, genetic evolution, and 

intelligence in Particle Swarm Optimization algorithms that lead to a hybrid nature in optimization. 

The study sets the context necessary to justify further why advancements in the Particle Swarm 

Optimization core need to be further explored. 

In the past years, control systems have added various optimization algorithms to all domains to 

improve their performance [29]-[33]. Optimization algorithms are utilized in solving optimization 



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

461 
Vol. 5, No. 1, 2025, pp. 459-478 

  

 

Ahmad MohdAziz Hussein (A Hybrid PSO-GCRA Framework for Optimizing Control Systems Performance) 

 

problems to make the systems work effectively with the desired results. Optimization algorithm 

solutions can help automotive safety, airspace, impedance control, management of urban traffic, 

mission planning, assembly systems, algorithm signal reconstruction, field monitoring, surface 

modeling, and others to solve their real-world problems. With the advancement in technology in the 

past years, many optimization procedures have evolved, with some of the most used being Genetic 

Algorithm, Particle Swarm Optimization, and Artificial Bee Colony [8], [34]. Although these 

methodologies have worked successfully, they have some limitations and sometimes suffer from 

premature convergence. 

Control systems performance denotes the capability of the control systems to ensure their 

effectiveness [35], [36]. The evaluation of control systems is primarily associated with the ability of 

the systems to satisfy specific criteria [37], [38]. When evaluating the performance of control systems, 

different factors could be considered. The operating conditions, disturbance effects, and maturity 

caused by the modeling errors can determine the deviation between the input signals and the reference 

system response [39], [40]. Three fundamental factors can be used to test the ability of a control 

system: stability, response time, and accuracy [41], [42]. In practice, there will be many aspects that 

can affect the capability of the control systems. Therefore, obtaining optimal performance is an 

important attribute when operating under various conditions. In many real-world applications, the goal 

when building the control system is to obtain the fastest possible response time with the least influence 

on the system's dynamics [43], [44]. Thus, it is necessary to consider the interaction between the 

controllers and system variables when examining the systems' capabilities. In recent years, several 

studies have been proposed to assess control structures in different application domains [45], [46]. 

The primary methods used revolve around the assessment of focus. These methods are typically based 

on the application of computational algorithms to obtain desired results, and many of these answers 

require optimization functions for modeling [47]. Several publications have been proposed for 

evaluating the ultimate performance of controllers [48], [49]. One of the significant steps beyond 

assessing the performance of the controllers is the use of sophisticated techniques [50], [51]. 

The Greater Cane Rat Algorithm (GCRA), which employs the strategy of mutating and crossing 

over, derives its inspiration from cane rats that forage [52]. The GCRA, unlike other local search 

algorithms, exhibits exceptional proficiency in exploration and load balancing which results in the 

ability to implement efficient refinements. However, such limitations of GCRA in its global search 

capability complement its combination with algorithms such as Particle Swarm Optimization (PSO). 

Existing hybrid algorithms do not have such unique combinations and are plagued with several 

limitations including premature convergence, poor optimization of parameters, and subpar balances 

between exploration and exploitation, to name a few. For example, many use discrimination against 

other algorithms and rely on one algorithm through which benefits outweigh. The framework PSO-

GCRA has been developed to fill these deficiencies for a large class of problems by integrating global 

search abilities due to Particle Swarm Optimization (PSO) and local search abilities due to GCRA. 

Meanwhile, the identification of suitable metrics could provide an exploration point when finding 

the rise-time-oriented controllers. Most of the identified control performance assessment methods 

revolve around the techniques of computational intelligence. However, the main limitation in the 

collected literature is the need for more focus on designing a strategy that employs predictive 

techniques for obtaining the desired results. In addition, one of the main challenges of the existing 

predictive intelligence views is the need for an efficient optimization strategy. The main objective of 

this study is to propose a hybrid strategy for improving the performance of control systems. 

 In this paper, we introduce a new hybrid framework that combines Particle Swarm Optimization 

(PSO) and Generalized Conditional Random Fields (GCRA), which we call PSO-GCRA. This 

integration leverages the strengths of both algorithms, enhancing the global search capabilities of PSO 

with the local refinement strategies of GCRA.  PSO shines in scanning the global search space which 

helps in avoiding early convergence and assists in locating attractive regions. GCRA supplements 

value in the algorithm through local search processes as it utilizes mutation and crossover operations 

to improve the accuracy of those solutions. Accordingly, the PSO-GCRA hybrid framework is not 

heavily weighted in one approach but moderately balances both, whereby its usefulness is clear when 
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solving optimization problems of different complexities. In turn, the aim of the PSO-GCRA 

framework is forecasting, maintaining, and also optimizing the performance level of control systems. 

Such forecasting is of great importance to control systems because it assists in efficient decision-

making, planning, and even operational stability. Investment, for instance, in energy systems, accurate 

forecasting of loads is critical as it reduces waste, increases the reliability of the grid, and lowers 

operational costs. On the other hand, the current forecasting methods face difficulties in ensuring that 

a balance between accuracy, stability, and computational efficiency is attained, particularly in fast-

changing and non-linear environments. To validate the applicability of the PSO-GCRA framework, 

we implement it to a real-life load forecasting scenario with the use of Australian Energy Market 

Operator (AEMO) data. This is a real-world implementation, which is especially interesting since the 

dataset contains temporal and nonlinear characteristics of energy demand, which makes load 

forecasting a more difficult task. Several methodologies, including EMD-SVR-PPSO, FS-TSFE-

CBSSO, VMD-FFT-IOSVR, and DCP-SVM-WO, which are efficient at blade design optimization 

and forecasting, have been utilized to benchmark this framework. The experimental analysis depicts 

that the framework GRA-PSO performs better than its counterparts on all of the measured indices 

defined in the system. First of all, it yields better accuracy because the Mean Absolute Percentage 

Errors (MAPE) are lower, it also performs to have higher stability with smaller prediction deviations 

and more efficient convergence performance.  The main contributions of this work are as follows: 

• We developed a new hybrid PSO-GCRA optimization framework that merges global and local 

search strategies to enhance control system performance. 

• The proposed framework is applied to load forecasting, a vital task in control system operations. 

• We conducted a thorough evaluation of the framework using real-world data and compared it 

with benchmark methods to confirm its effectiveness. 

• A detailed analysis of accuracy, stability, and convergence rate metrics is provided to showcase 

how PSO-GCRA outperforms existing approaches.  

The rest of this paper is structured as follows: Section 2 introduces the proposed methodology, 

detailing the hybrid PSO-GCRA framework and its implementation. Describes the experimental 

setup, detailing the dataset, preprocessing methods, and performance metrics used. Section 3 provides 

a thorough discussion of the simulation results, evaluates performance, and compares findings with 

benchmark methods. Finally, Section 4 concludes the paper and proposes possible directions for future 

research. 

2. The Proposed Method 

2.1. Particle Swarm Optimization Algorithm 

Particle Swarm Optimization Algorithm (PSO) is a member of the broader class of swarm 

intelligence techniques for the solution of global optimization problems [53]. It is based on the social 

behavior of birds that flock in large numbers to find food, separate, and cover the environment. Each 

member of the bird flock is considered a part of the swarm. A similar proportion of digital particles is 

closely related to vectors in the problem search space. A common swarm bird or particle in the 

multidimensional search space tries to find the optimal value of the objective function during 

movement through the fitness landscape [8]. 

The position and velocity of each particle in the PSO algorithm specify the possible solutions and 

their search tendencies, respectively. The velocity informs the step size, and the position informs the 

quality of the solution in the search space. The candidate moves for most particles surrounding the 

already discovered good solutions that did not satisfy the global requirements of convergence. The 

essence of the PSO is multiple particles moving around a multidimensional objective state space, 

depending on their own experience and the experiences of their companions. The experiences guide 

the particles closer to potentially better areas of the objective space. Despite its artificial nature, it is 
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intended for function optimization. For the PSO method to be used to solve the optimization problem, 

the continuous values are inherently searched for maximizing or minimizing an objective function. 

Particle Swarm Optimization (PSO) is a population-based optimization algorithm inspired by the 

social behavior of birds and fish [54], [55]. It iteratively adjusts the position and velocity of particles 

in the search space to minimize or maximize an objective function. After the particles' positions are 

initialized randomly, their velocities are also initialized randomly in one of the most known ways. 

There are a few velocity initialization algorithms that we can apply, which include but are not limited 

to random initialization of the velocities between 0 and 1 or an interval scale between a pair of random 

numbers. The objective of initializing the velocities is to give the particles an appropriate push to 

begin the optimization process. The selection of initial velocities will directly determine the way the 

algorithm evolves and explores the search space. The velocity is a vector that specifies the movement 

of the particle's position on each dimension. To perform a velocity update, the particles must take into 

account their previous position and the solution of performing the best. The movement equation that 

a particle follows at iteration 𝑡 for the 𝑖-th variable can be presented as follows: 

 𝑣𝑖(𝑡 + 1) = 𝑤 × 𝑣𝑖(𝑡) + 𝑐1 × 𝑟1 (𝑝𝑖𝑏𝑒𝑠𝑡
− 𝑥𝑖(𝑡)) + 𝑐2 × 𝑟2 × (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) (1) 

where 𝑟1 and 𝑟2 are random numbers between 0 and 1, 𝑤 is the inertia weight, and 𝑣𝑖
𝑑 is the velocity 

of the 𝑖-th particle on dimension 𝑑. 𝑐1 and 𝑐2 are the acceleration coefficients, 𝑝𝐵𝑒𝑠𝑡𝑖
, 𝑑, and 𝑔𝐵𝑒𝑠𝑡𝑖

, 𝑑 

are the 𝑝𝐵𝑒𝑠𝑡 position and the 𝑔𝐵𝑒𝑠𝑡 position of the 𝑖-th particle until the timestep 𝑡. The right side of 

the equation is the sum of three terms. The 𝑐1 was set to 1.5 to balance individual exploration, while 

the 𝑐2 was set to 2.0 to emphasize swarm collaboration. The first term is related to the particle's 

previous velocity state; the second term represents how much the particle will explore its solution 

space (toward the best position that a particle 𝑖 found so far). If the particle 𝑖 is near a solution, then 

this term will be high; otherwise, it will be low. The third term represents the group's influence (toward 

the global best position). If the global best position is close to the particle 𝑖, this term directs the 

particle to a solution. To update the final position of the PSO, the following equation is used. 

 𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (2) 

PSO is good at exploring the global search space, but it has difficulty refining solutions in local 

areas because of its limited ability to exploit. 

2.2. Greater Cane Rat Algorithm 

Inspired by the tendency of cane rats to, when raiding farms, begin their search in the most remote 

areas of the plot and edge inward, the Greater Cane Rat Algorithm is constructed to mimic sense-and-

response behavior to find food by a group of cane rats. This algorithm is one of the newly developed 

optimization techniques that replicate the mustering ideas of natural lives and display the principles 

of group dynamics. Exploration in the GCR algorithm is accomplished by generating new candidate 

solutions. In the case of rats, it means that the initial and further responses include new bad gerbil 

reclamation [28], [56].  

In addition, the production of a limited number of candidate solutions corresponds to exploitation 

in the optimization acceleration procedure. The dynamic behaviors of GCR are due to the trade-off 

between exploration and exploitation. The GCR algorithm possesses considerable exploration and 

exploitation capabilities. The integration of the two makes GCR a novel optimization algorithm. It has 

complex response functions, which guarantee promising convergence. Tested optimization and 

application problems reflect that the GCR algorithm significantly outperforms other optimization 

algorithms for solving complex optimization problems with local and global constraints. The GCR 

algorithm has been developed to solve complex optimization problems to guarantee global 

convergence. Owing to the use of mustering response techniques, the algorithm's suitability depends 

on dynamic systems. In dynamic models, rats respond quickly to brain prompting. Finally, we believe 

that the GCR algorithm will lead to a variety of improvements in future research. Few optimization 

algorithms focus on complex optimization problems involving non-differentiable constraints and 
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perform well in practice. In response to this lack of automation in optimal design, this paper proposes 

a novel optimization algorithm termed the Greater Cane Rat Algorithm. The paper aims to provide an 

alternative stochastic optimization algorithm for the best execution of multi-constrained dynamic 

systems. The adopted case study problems and experimental results are expected to illustrate the 

effectiveness of the proposed optimization algorithm. This will be the focus of future studies, as well 

as the possible integration with other optimization algorithms to create a hybrid system. In conclusion, 

compared with many other optimization algorithms, GCR has considerable advantages in terms of its 

convergence speed, run-time efficiency, and strong potential for application in complex optimization 

problems. 

 The Greater Cane Rat Algorithm (GCRA) is an optimization technique based on searching 

methods inspired by the social behavior and foraging activities of cane rats. It is particularly concerned 

with adaptive exploration and local search. In GCRA, movements in the search space employ a 

position modification strategy, which involves mutation and crossover operations. A position update 

mechanism is used based on a Mutation strategy as follows: 

 𝑥𝑖𝑛𝑒𝑤
= 𝑥𝑖 + 𝛽 × (𝑥𝑗 − 𝑥𝑘) (3) 

Where 𝑥𝑖(current position), 𝑥𝑗 and 𝑥𝑘 are positions of other individuals randomly selected, and 𝛽 is a 

mutation factor controlling the stepping distance. Formally, the Crossover Operation can be 

mathematically represented in the following manner 

 𝑥𝑖𝑛𝑒𝑤
= 𝛾 × 𝑥𝑖 + (1 − 𝛾) × 𝑥𝑗 (4) 

Where, 𝛾 is a random number between [0, 1]. While GCRA is excellent at local refinement, it lacks 

the global exploration capabilities needed for complex optimization problems. 

2.3. The Proposed PSO-GCRA Hybrid Framework 

The PSO-GCRA algorithm uses both Particle Swarm Optimization (PSO) and the Greater Cane 

Rat Algorithm (GCRA) in a way that allows a better solution for a given problem. It includes a 

composition start where all optimum and solution variables are generated. Every particle is given a 

location and is assigned a velocity for use in the objective function during fitness evaluation. Also, 

during the basic use of PSO movement of particles across the solution space is facilitated by velocity 

and position information gathered by the swarm. Here, cognitive and social coefficients assist in 

accurate weighting, providing direction for proper balance of pore space exploration and offset 

exploitation to take place. 

As soon as local solutions are generated during the first step, the GCRA sends GCR in search of 

a global optimum solution. Genetic operators such as mutation and crossover are also used in this 

phase in order to come up with more optimal solutions. For instance, crossover is used to generate 

solutions by incorporating the features of both parent solutions, while mutation modifies a particle’s 

location based on variance from randomly selected particles. So, a locally excellent solution to the 

problem defined for the hybrid algorithm is also found without prematurely converging. 

Once the fitness of the refined solutions is calculated and there is shown to be an improvement 

in the new solutions, both personal and global best positions are adjusted. This iterative process 

interlaces the global search of PSO with the local search of GCRA. This continues to carry out until a 

stopping criterion is satisfied, for example maximum iteration total or a pre-defined fitness limit is 

reached. Combining both algorithms does not diminish their advantages, and as a result, a very 

effective framework is formed that generates optimal solutions, accurate and stable. 

The modified PSO-GCRA hybrid framework integrates the parallel searching capabilities of the 

Particle Swarm Optimization (PSO) technique with the Genetic Clustering and Regression Analysis 

(GCRA) fusion technique. The two methods, when combined, result in a well improved optimization 

performance, which addresses the shortcomings of each of the individually existing methods. More 

particularly, PSO achieves a global search which is effective in looking for solutions in the solution 

space and seeks to localize GCRA searches to improve on solution accuracy.  
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The working steps of the PSO-GCRA framework are as follows: 

2.3.1. Initialization 

A collection of particles, each representing a potential solution, is initialized with random 

positions (𝑥𝑖) and velocities (𝑣𝑖). The total count of particles is denoted as N, and the position and 

velocity of each particle are defined within a multidimensional search space. The objective function 

is evaluated for each particle to determine its initial fitness value. 

2.3.2. PSO Phase (Global Search) 

In this phase, particles modify their velocities and positions according to their personal best 

position (𝑝𝑖𝑏𝑒𝑠𝑡
) and the best position overall (𝑔𝑏𝑒𝑠𝑡). The velocity of particle 𝑖 at iteration 𝑡 + 1 is 

calculated using the following equations. 

 𝑣𝑖(𝑡 + 1) = 𝑤 × 𝑣𝑖(𝑡) + 𝑐1 × 𝑟1 (𝑝𝑖𝑏𝑒𝑠𝑡
− 𝑥𝑖(𝑡)) + 𝑐2 × 𝑟2 × (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) (5) 

In this formula, 𝑤 represents the inertia weight, which helps to balance exploration and 

exploitation. The coefficients 𝑐1 and 𝑐2 are the cognitive and social coefficients, respectively, while 

𝑟1 and 𝑟2 are random numbers uniformly distributed between 0 and 1. The position of particle 𝑖 at 

iteration 𝑡 + 1 is updated as follows: 𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) +  𝑣_𝑖(𝑡 + 1). Finally, the objective function 

is re-evaluated for the new positions, and the personal and global best values are updated accordingly. 

2.3.3. GCRA Phase (Local Refinement) 

After the global search phase is finished, particles' positions are refined using GCRA’s mutation 

and crossover operations one by one to enhance local search. 

• Mutation 

The position of particle 𝑖 is updated using the following equation. 

 𝑥𝑖𝑛𝑒𝑤
= 𝑥𝑖 + 𝛽 × (𝑥𝑗 − 𝑥𝑘) (6) 

Where, 𝑥𝑗 and 𝑥𝑘 are positions randomly chosen from the population. beta is the mutation factor that 

determines the step size.  

• Crossover 

A crossover operator merges the positions of two particles to create a new position 

 𝑥𝑖𝑛𝑒𝑤
= 𝛾 × 𝑥𝑖 + (1 − 𝛾) × 𝑥𝑗 (7) 

Where, 𝛾 is a random value between 0 and 1, which influences the balance of the parent positions. 

2.3.4. Fitness Evaluation 

The updated positions are assessed using the objective function. If the updated positions enhance 

the fitness values, the personal best (𝑝𝑖𝑏𝑒𝑠𝑡
) and global best (𝑔𝑏𝑒𝑠𝑡) values are revised.  

2.3.5. Termination 

The algorithm continues to alternate between the global search and local refinement phases until 

a stopping criterion is satisfied, such as reaching the maximum number of iterations or meeting a 

specified fitness threshold. 

Algorithm 1 shows the integration of Particle Swarm Optimization and the Greater Cane Rat 

Algorithm to enhance the performance of control systems. The proposed method captures the benefits 

of both algorithmic techniques while moderating their limitations, ultimately leading to improvements 

in terms of performance and adaptability within the control of real systems. A hybrid algorithm is a 

single algorithm in which two or more operators have been used to produce improved performance of 

control systems. It extends the optimization capability of the PSO by exploiting the inherent strengths 

of each. Here, the PSO acts as the global searcher, and the GCRA acts as the local searcher. 
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Hypothetically, the GCRA has desirable benefits as it can drive the optimal or suboptimal solution 

toward the PSO, triggering the global searching capability of the PSO to find the optimal solution 

more accurately. The main novelty of the proposed method is using the combination of a forecasting-

based evolutionary computing algorithm of the complex model of the control process, which is a 

combination of different time characteristic time scale models with MCMA for searching the global 

optimal tuning populated for fast and slow adapting parameters. The combination of these algorithms 

for the PID controller is systematic. 

Algorithm 1. The proposed PSO-GCRA Hybrid Framework 

Algorithm: PSO-GCRA Hybrid Framework 

Input: Population size (N), maximum iterations (max_iter), objective function f(x) 

Output: Optimal solution x_opt 

1. Initialization: 

   a. Set positions x_i and velocities v_i for all particles in the population. 

   b. Assess and Evaluate the fitness f(x_i) for each particle. 

   c. Define and Set personal best p_i_best = x_i and global best g_best = best(p_i_best). 

2. Repeat for t = 1 to max_iter: 

   // PSO Phase: Global Search 

   a. For each particle i: 

      i. Update velocity: 

         v_i = w * v_i + c1 * r1 * (p_i_best - x_i) + c2 * r2 * (g_best - x_i) 

      ii. Update position: 

         x_i = x_i + v_i 

      iii. Evaluate fitness f(x_i). 

      iv. Update p_i_best if f(x_i) < f(p_i_best). 

   b. Update g_best if any p_i_best improves the global best. 

   // GCRA Phase: Local Refinement 

   c. For each particle i: 

      i. Apply mutation: 

         x_i_new = x_i + beta * (x_j - x_k), where x_j and x_k are random particles. 

      ii. Apply crossover: 

         x_i_new = gamma * x_i + (1 - gamma) * x_j, where x_j is a random particle. 

      iii. Evaluate fitness f(x_i_new). 

      iv. Update p_i_best if f(x_i_new) < f(p_i_best). 

   d. Update g_best if any p_i_best improves the global best. 

3. Termination: 

   a. Stop if max_iter is reached or g_best satisfies the convergence criterion. 

4. Return g_best as the optimal solution x_opt. 

3. Results and Discussion 

3.1. Simulation Setup 

The experiments were conducted to find the performance of a new hybrid framework which is a 

combination of Particle Swarm Optimization (PSO) and Greater Cane Rat Algorithm (GCRA) that 

allows for better control system performance. Here are the specifics regarding the simulation setup, 



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

467 
Vol. 5, No. 1, 2025, pp. 459-478 

  

 

Ahmad MohdAziz Hussein (A Hybrid PSO-GCRA Framework for Optimizing Control Systems Performance) 

 

computational resources, and implementation details. The system was equipped with Intel Core i7-

12700H, 16 GB RAM, and an NVIDIA RTX 3060 GPU for accelerated computing. The software 

used included Python 3.9, including processor libraries such as NumPy and Pandas for data 

manipulation, Scikit-learn for baseline AI modeling, and Matplotlib for data publication. 

MATLAB R2023a was used to evaluate the performance of the algorithms and make some 

modifications using the comprehensive optimization toolbox they possess. The PSO-GCRA algorithm 

was developed to integrate PSO's global search capability with GCRA's local search enhancement 

ability, addressing problems such as excessive local search and difficulty in adaptation that are 

encountered when using traditional techniques. The particle swarm aspect first set the population and 

globally optimized the solutions, while GCRA applied mutation and crossover operators aimed to 

increase diversity and improve solutions gradually. 

The characteristics of this hybrid methodology include a population size of 50, a maximum of 

100 iterations, an adaptive inertia weight on PSO, and fixed mutation and crossover rates on GCRA 

at 0.2 and 0.8, respectively. The target function aimed at the minimization of the root mean square 

error (RMSE). This was done with a particular emphasis on convergence time to ensure high accuracy 

without sacrificing long-term stability while decreasing time inefficiencies in optimizing control 

systems. This setup laid the groundwork for conducting a benchmarking and comparative analysis of 

the proposed framework with the existing methods. 

Table 1 shows the settings of a PSO-GCRA hybrid, which aims at achieving an effective balance 

between exploration and exploitation. Complementarily, both the PSO and GCRA have the same 

population size of 50 and a limit of 100 iterations, which enables them to have a good range of search 

diversity and good computational performance. In the PSO, the cognitive coefficient (𝑐1 = 1.5) and 

social coefficient (𝑐2 = 2.0) enable interaction at the individual and group level, whilst the adaptive 

inertia weight (𝑤 = 0.7) facilitates an adjustment between explorative and exploitative activities. 

GCRA uses mutation and crossover (0.2 and 0.8 rates, respectively) for further improvement of local 

refinement, whereas attraction (𝛽0 = 1.0) and light absorption (𝛾 = 1.2) coefficients control the 

search’s adaptability. Such parameter arrangements improve the synergy of the two algorithms and 

guarantee convergence with optimal results. 

3.2. Dataset 

The data set in which the hybrid PSO-GCRA framework was evaluated has been taken from the 

Australian Energy Market Operator (AEMO) data portal, which can be accessed from the AEMO 

Data Portal (https://aemo.com.au/) [57], [58]. This data set contains half hourly electricity load for 

five Australian states, New South Wales, Queensland, South Australia, Tasmania and Victoria, 

publicly available for a long period. In the pre-processing stage, the data was fed into a time-series 

forecasting model as part of the extensive pipeline. The first step of the pre-processing stage was data 

cleansing which dealt with missing values utilizing moving averages. Z-scores were first used to 

identify and subsequently exclude outliers from the dataset to minimize the chances of adverse 

distortions to the end results. To make the data suitable for the optimization algorithm, all values were 

normalized through Min-Max scaling, which set the new range between 0 and 1, decreasing the 

chances of large value’s numerical differences causing problems. Lastly, the sequel data set was 

organized according to chronology, thus ensuring that all temporality essential to time series 

forecasting was retained. These pre-processing techniques ensured that the data fed into the model 

was clean, well-normalized and optimal for the evaluation of the proposed method's prediction 

accuracy, stability and convergence rate for various load patterns. 

3.3. Performance Metrics 

This research employed a hybrid PSO GCRA framework, which was evaluated using a number 

of measures, including the accuracy of the system, its stability, and the rate of convergence of the 

system. Accurate measures of the Mean Absolute Percentage Error (MAPE), Mean Squared Error 

(MSE), and Root Mean Squared Error (RMSE), which determined the deviation between the 

forecasted value and the actual value, were also implemented [59], [60]. Standard Deviation (STD) 

https://aemo.com.au/
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scores for the forecasted values were used to evaluate the stability, where smaller STD values meant 

lower variability in the results across the repetitions. The rate of convergence was determined by the 

number of iterations or time the algorithm ran to get to an optimal state, which reflected the efficiency 

of the hybrid system; the Diebold-Mariano (DM) test was also used to compare the forecast accuracy 

of the suggested model against others in the benchmark more empirically. In total, these measures 

were paramount in assessing the appropriateness of the proposed model in the optimization of the 

control problems with high regard to accuracy, stability, and computational efficiency. 

Of particular interest in transforming the hybrid PSO GCRA framework was the use of a 

combination average of several measures, including the system's accuracy, stability, and rate of 

convergence. The accuracy metrics used to evaluate forecasting performance include several key 

measures: 

• Mean Absolute Percentage Error (MAPE): This is calculated as 𝑀𝐴𝑃𝐸 = (1/𝑁) ∗ 𝛴|𝑦𝑎𝑡 −
 𝑦𝑓𝑡| / |𝑦𝑎𝑡| ∗ 100, where 𝑦𝑎𝑡 represents the actual value, 𝑦𝑓𝑡 is the forecasted value, and N is 

the total number of predictions. 

• Mean Squared Error (MSE) 

This metric is defined as 𝑀𝑆𝐸 = (1/𝑁) ∗ 𝛴(𝑦𝑎𝑡 − 𝑦𝑓𝑡)
2
. 

• Root Mean Squared Error (RMSE) 

RMSE is derived from the formula 𝑅𝑀𝑆𝐸 =  𝑠𝑞𝑟𝑡((1/𝑁) ∗ 𝛴(𝑦𝑎𝑡 −  𝑦𝑓𝑡)
2

). 

• Standard Deviation (STD) 

This is calculated using 𝑆𝑇𝐷 = 𝑠𝑞𝑟𝑡((1/𝑁) ∗ 𝛴 (𝑦𝑓𝑡  −  𝑚𝑒𝑎𝑛(𝑦𝑓𝑡))
2

), where 𝑚𝑒𝑎𝑛(𝑦𝑓𝑡) is 

the average of the forecasted values. 

• Convergence Rate 

This rate is assessed based on the number of iterations or the computational time needed to 

achieve an optimal solution. 

• Diebold-Mariano (DM) Test 

This statistical test compares the accuracy of the proposed framework with benchmark methods, 

expressed as 𝐷𝑀 = 𝛴(𝐿(𝑒𝑓1, ℎ) − 𝐿(𝑒𝑓2, ℎ))/𝑠𝑞𝑟𝑡(𝑆2/𝑘), where 𝑒𝑓1, ℎ and 𝑒𝑓2, ℎ are the forecast 

errors from two models, 𝐿(. ) is the loss function, 𝑆2 is the variance, and 𝑘 is the lag order [61], [62].  

These metrics provided a comprehensive evaluation of the proposed framework, validating its 

ability to tackle control system optimization challenges while highlighting accuracy, stability, and 

computational efficiency. 

3.4. Comparison with Benchmark Methods 

 In order to ascertain the utility of the suggested hybrid PSO-GCRA framework, such systematics 

as accuracy, stability and convergence rate were focused, as shown in Table 2. The performance of 

the framework was reported on various parameters, including forecasting error and degrees of 

precision. Various statistical indicators, including Mean Absolute Percentage Error (MAPE), Mean 

Squared Error (MSE), and Root Mean Squared Error (RMSE), were employed to assess accuracy. 

These metrics quantify the prediction error based on the difference between actual and modeled 

values. To Assess Stability, the STD of the data was carried out and interpreted as shown in Table 2: 

the lower the value the more stable the performances of the results across the several runs. The 

convergence rate was determined by the total number of iterations or the computational time taken by 

the algorithm to arrive at an ideal result confirming the performance of the hybrid approach. The 

forecasting efficiency of the framework was also examined using the statistical measure of the 

Diebold–Mariano (DM) test by comparing it with other developed methods. These metrics provide a 
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holistic assessment of the proposed framework to control system optimization problems with an 

emphasis on accuracy, stability, and computational efficiency. 

Table 1.  The parameter settings for the proposed PSO-GCRA hybrid framework 

Parameter PSO Value GCRA Value 

Population size 50 50 

Maximum iterations 100 100 

Cognitive coefficient (𝑐1) 1.5 - 

Social coefficient (𝑐2) 2.0 - 

Inertia weight (𝑤) 0.7 (adaptive) - 

Mutation rate - 0.2 

Crossover rate - 0.8 

Attraction coefficient (𝛽0) - 1.0 

Light absorption (𝛾) - 1.2 

Table 2.  The accuracy metrics for all methods 

Method MAPE (%) MSE RMSE 
PSO-GCRA 2.05 15.32 3.91 

EMD-SVR-PSO 2.85 20.17 4.49 

FS-TSFE-CBSSO 2.98 22.05 4.69 

VMD-FFT-IOSVR 3.12 24.01 4.90 

DCP-SVM-WO 3.34 26.18 5.12 

 

In order to ascertain the utility of the suggested hybrid PSO-GCRA framework, such systematics 

as accuracy, stability and convergence rate were focused, as shown in Table 3. The performance of 

the framework was reported on various parameters, including forecasting error and degrees of 

precision. Various statistical indicators, including Mean Absolute Percentage Error (MAPE), Mean 

Squared Error (MSE), and Root Mean Squared Error (RMSE), were employed to assess accuracy. 

These metrics quantify the prediction error based on the difference between actual and modeled 

values. To Assess Stability, the STD of the data was carried out and interpreted: the lower the value 

the more stable the performances of the results across the several runs.  

The convergence rate was determined by the total number of iterations or the computational time 

taken by the algorithm to arrive at an ideal result confirming the performance of the hybrid approach. 

The forecasting efficiency of the framework was also examined using the statistical measure of the 

Diebold–Mariano (DM) test by comparing it with other developed methods. These metrics provide a 

holistic assessment of the proposed framework to control system optimization problems with an 

emphasis on accuracy, stability, and computational efficiency. 

Table 3.  The performance of the proposed hybrid PSO-GCRA framework 

Method STD (MAPE) STD (RMSE) 
PSO-GCRA 0.021 0.008 

EMD-SVR-PSO 0.029 0.011 

FS-TSFE-CBSSO 0.034 0.013 

VMD-FFT-IOSVR 0.039 0.016 

DCP-SVM-WO 0.042 0.019 

 

The measurements in Table 3 further establish the consistency of the suggested PSO-GCRA 

framework, which has been previously noted to perform better than the benchmark methods over 

several runs. The standard deviation (STD) of MAPE for PSO-GCRA was 0.021, which was lower 

than EMD-SVR-PSO with 0.029 and other approaches, substantiating its ability to provide 

trustworthy predictions. Likewise, the STD of RMSE for PSO-GCRA (0.008) again was the lowest 

of all methods, making it possible to conclude that this method is also effective in providing steady 

performance. These enhancements in stability are due to GCRA’s procedures, which work in a loop, 

helping to optimize the solutions, hence ensuring that the model does not collapse due to random 
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changes in parameters or changes in data. This reliability is of primary importance in applications 

where robustness while maintaining accuracy is equally desired. 

The rate of convergence was assessed in terms of the number of iterations in which the desired 

solution was computed and the time taken to do so. Table 4 shows the convergence performance of 

the hybrid model PSO-GCRA alongside other models. The hybrid model performed much better 

compared to its counterparts as it was faster both in terms of convergence and computation and had 

improved exploring and exploiting methods. 

It can be seen from Table 4, that the hybrid PSO-GCRA framework provided quicker 

convergence. More iterations were needed for completion with other techniques, such as EMD-SVR-

PSO with a sale of 48, and FS-TSFE-CBSSO with 55 sales; in total, the PSO-GCRA completed in 

only 34 iterations. The computation time for PSO-GCRA was approximately 4.7 seconds; this 

displays the efficacy in resolving intricate optimization issues. This mashed effectiveness increases 

results from combining PSO’s global search capabilities attributes with GCRA’s refined local 

searches, which foster convergence by dismissing unnecessary and excessive searches while 

concentrating on regions of the solution space with high potential. This lesser computational strain 

also makes the PSO-GCRA architecture ideal for control systems that operate in real-time. 

Table 4.  The convergence behavior of the hybrid PSO-GCRA compared to other methods 

Method Iterations to Converge Computational time (s) 
PSO-GCRA 34 4.7 

EMD-SVR-PSO 48 6.1 

FS-TSFE-CBSSO 55 7.3 

VMD-FFT-IOSVR 60 8.5 

DCP-SVM-WO 68 9.8 

 

The graphs of the convergence curves, as seen in Fig. 1, indicate and show the optimization 

characteristics of the proposed PSO-GCRA framework when measured or compared with the EMD-

SVR-PSO, FS-TSFE-CBSSO, VMD-FFT-IOSVR, and DCP-SVM-WO methods that serve as 

benchmarks. In terms of reaching an optimal fitness value, the PSO-GCRA framework outdid 

benchmarks by an approximation of 10 -40 iterations, with benchmarks averaging 48 -68 as the PSO-

GRA averaged 34. This advancement can be credited to the PSO and GCRA hydration. For example, 

the global search proficiency of a single particle swarm assists in navigating the solution in a faster 

manner. GCRA’s crossover and mutation techniques aid in the search process but locally worsen the 

chances of exact convergence. The progressively low validation of fitness value during the iterations 

of PSO-GCRA demonstrates the enhanced robustness and accuracy of PSO-GCRA in dealing with 

control system problems. 

There are three methods employed in this weight prediction of construction loads, and they are 

PSO-GCRA, EMD-SVR-PSO, and FS-TSFE-CBSSO. The comparison between the predicted load 

values and the actual values is displayed in Fig. 2, where the ideal value is shown by y = x. The results 

from PSO-GCRA are very satisfactory as they are very close to this ideal line. But Other methods 

result in forecasting and extrapolating very distinct values, especially when the loads are heavy, which 

leads to deteriorating the prediction accuracy. PSO-GCRA’s output does not deviate much as it is 

designed not to deviate from the actual time-dependent and non-linear data set; this attribute is derived 

from the evolved hybrid algorithm’s capacity to effectively carry out good modernization of the model 

parameters yielding confidence even with different load scenarios. This indicates the relevance of the 

PSO-GCRA framework for online load forecasting within changing scenarios such as smart grids. 

Fig. 3 gives a quantitative analysis of MAPE and RMSE for all the methods evaluated in this 

study. The framework of PSO-GCRA is worth mentioning since it records the lowest MAPE of 2.05 

percent and RMSE of 3.91, beating EMD-SVR-PSO with MAPE of 2.85 percent and RMSE of 4.49 

and FS-TSFE-CBSSO which had a MAPE of 2.98 and RMSE of 4.69. These lower error rates prove 

the strength of the hybrid model to yield satisfactory results even under varying input conditions. The 

bar chart clearly demonstrates the overall gap in performance as beneficial of PSO and GCRA 
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integration is sought. However, the aforementioned benchmark methods are observed to have high 

error rates, making them prone to overfitting local minima problems and inadequate parameter tuning. 

 

Fig. 1. Convergence Curves A line graph showing iteration vs. fitness value 

 

Fig. 2. Forecasted vs. Actual Load, comparing the forecasted load values with the actual load values for 

PSO-GCRA and benchmark methods 

The three figures suggest strongly that the PSO-GCRA is superior to all other algorithms in all 

three aspects: speed of convergence, accuracy of forecasts, and error reduction. This hybrid algorithm 

optimizes well across multiple test environments, with a better balance between exploration and 

exploitation, thereby making the optimization process faster. These findings classified PSO-GCRA as 

a robust and efficient approach over regular techniques for load forecasting and control system 

optimization. There are still aspects to this framework that future researchers could attempt to develop, 
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such as its application in predicting renewable energy production or even controlling industrial 

processes, to better gauge its scalability and adaptability. 

 

Fig. 3. Error comparison across methods 

The combination of PSO and GCRA techniques into a single framework suggests a new approach 

to hybrid models, advancing accuracy, stability, and convergence even further. These results reaffirm 

the idea that more efficient forecasting models for control system applications can be developed by 

using a combined approach, that is, a combination of modeling techniques. Compared to standard 

techniques, the PSO-GCRA framework proved to be a validated and efficient tool for load forecasting 

and control systems optimization, as it resulted in lower error margins, greater stability, and reduced 

convergence time. Further studies may focus on the applicability of this GARC beyond load 

forecasting and the probable changes that may need to be made to optimize performance with larger 

datasets. 

The PSO-GCRA framework boasts of some remarkable attributes like enhanced accuracy, 

stability, and convergence, which are all demonstrated by the superior performance metrics that the 

girl's program achieves when compared with the benchmark methods. It can be observed that the 

hybrid approach efficiently joins the global searching feature of PSO together with the locality 

improvement characteristics of the GCRA, thereby availing a high level of optimization in diverse 

situations. On the other hand, the framework also has some limitations. The framework requires more 

resources due to the increased complexity that comes with combining GCR and GCRA operations, 

and this can be a hindrance for real-time use or for systems with limited computational resources. 

Furthermore, the performance of the framework is also affected by some settings of the parameters, 

which include population size, mutation rate, and crossover rate. Not properly adjusting these 

parameters would result in poor performance of the system thus emphasizing the importance of 

establishing automatic or adaptive methods for adjusting these parameters in future works. This 

knitted assessment demonstrates strengths that the framework possesses while at the same time 

pointing at weaknesses that call for optimization and refinement in order to broaden the scope of the 

framework as well as the range of circumstances in which it is applicable. 

4. Conclusion and Future Works 

The utilization of the PSD-GCRA hybrid framework enhances the optimization of control 

systems remarkably. This tool combines Particle Swarm Optimization (PSO) – which is a global 
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exploration technique, and Greater Cane Rat Algorithm (GCRA) – which is a local refinement 

technique. The two combined frameworks eliminate the drawbacks present in the individual 

algorithms. For instance, prematurely converged PSO and global search incapabilities of GCRA or 

even vice versa. This integration yields a total process of optimization that delicately searches the 

entire region and effectively modifies the solutions at the same time. Furthermore, the framework has 

been accurately validated using real-life load forecasting information from AEMO and excelled in 

comparison to traditional approaches, EMD-SVR-PSO, FS-TSFE-CBSSO, VMD-FFT-IOSVR or 

DCP-SVM-WO. Significant performance indicators like Mean Absolute Percentage Error (MAPE) 

and root mean square relative error (RMSE) reflect the efficacy of the hybrid framework. PSO-GCRA 

reported 2.05% MAPE value alongside an RMSE of 3.91 which is very much higher than the reference 

algorithms in all aspects of accuracy and stability. Further, the hybrid framework proved to possess 

conclusively higher rates of convergence which in turn resulted in reduced computational times while 

maintaining uniform results. All these aspects justify the adaptability and strength of the PSO-GCRA 

framework within emerging control systems to solve intricate and ever-changing optimization 

dilemmas. This work stands out both in helping advance the hybrid optimization framework and in 

applying the framework to load forecasting in energy management. The PSO-GCRA framework, as 

presented in the paper, is efficient in both terms of computational cost and in the quality of the solution 

to the problem, which will enable practitioners in a wide range of control systems and related fields 

to address different forms of optimization problems. 

Despite the progress made by the PSO-GCRA framework, several aspects still require further 

refinement and development to ensure efficient and effective results. Scalability to large-scale and 

high-dimensional problems remains a key area of improvement, as the current framework can handle 

large datasets but would benefit from enhanced computational efficiency, particularly in industrial 

applications where time constraints are critical. Incorporating methods like parallelization or 

distributed computing could address these challenges. Additionally, dynamic parameter tuning could 

significantly enhance the framework's performance. By integrating adaptive strategies, parameters 

such as inertia weight, mutation rate, and crossover rate could be adjusted in real-time, ensuring 

optimal algorithm performance across varying scenarios. Expanding the framework to support multi-

objective optimization is another crucial avenue. Currently limited to single-objective problems, the 

framework could be extended to address conflicting objectives, such as balancing cost and efficiency 

or stability, which are critical in fields like robotics, smart grids, and industrial processes. Testing the 

framework in real-time applications, such as robotics motion planning, renewable energy 

management, and automated industrial controls, could further validate its versatility and effectiveness 

in dynamic, fast-paced environments. Such implementations would also improve response accuracy 

while reducing computational time. Integrating the PSO-GCRA framework with machine learning 

and artificial intelligence techniques, such as reinforcement learning or deep learning, could help 

tackle predictive control challenges more efficiently. This integration would make the framework 

particularly useful in autonomous systems or industrial settings requiring predictive modeling and 

decision-making. Additionally, leveraging emerging optimization techniques, including hybrid and 

bio-inspired methods, could broaden the framework's applicability and provide stronger insights into 

its limitations and strengths. Examples of potential applications include healthcare optimization, 

financial modeling, and transportation systems. 

Further hybridization with other metaheuristic algorithms, such as Genetic Algorithms (GA) or 

Differential Evolution (DE), could enhance the framework's capabilities. By combining 

complementary optimization approaches, these hybridizations could yield even better results. Finally, 

the PSO-GCRA framework holds significant potential for revolutionizing newer applications, such as 

smart city models, IoT-based control systems, and sustainable energy systems, highlighting its 

adaptability and future relevance. Further work could also investigate how the framework can be 

employed in these aspects to resolve existing issues. Thus, the PSO-GCRA hybrid framework has 

made a promising step in providing a robust, flexible and efficient optimization framework for control 

systems. There is also the integration of global search and local search, which makes it more 

appropriate for dynamic and complex issues occurring in the real world. The performance of the 

system is subject to constant evaluation where the three critical areas that drive the evaluation process 
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are accuracy, stability, and convergence rate, with the improvements noted in all three areas clearly 

making the framework relevant for optimization challenges in the future. Additionally, the planned 

future work could further improve this framework and will make it possible to implement new 

solutions for novel applications across different areas. 
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