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1. Introduction 

All over the world in the last decade, research related to renewable energies (extraction, control, 

distribution, optimization, among others) has increased considerably for two main reasons: on the 

one hand, the uninterrupted increase in the energy consumption of modern societies; and on the other 

hand, and as a direct consequence of the previous one, the global need is being generated for 

eliminating the carbon footprint to mitigate the effects of climate change [1]-[4]. 

Wind energy (WE) is one of the renewable energies that has gained strength in recent years [5], 

[6]. To get an idea, at the end of 2015, there was a global installed capacity of about 433 GW [7], 

[8], due to its high technical maturity, low cost, and non-emission of gas compared to other renewable 

sources [9]-[11]. The wind turbine (WT) is a mechanical device that converts the flow of wind into 

rotational energy, which is finally converted into electrical energy by an electric machine [9], [12], 

[13]. WTs can be found in outlets in the range of watts to MW; in particular, a small WT is considered 

if it is less than 100 kW. Small WTs are used in low-power applications (residential and clean power), 
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the problem with these WTs is that they generally do not have speed control, which makes it difficult 

to control the output power [10], [14]. This control has to be done through a power electronic 

interface that regulates the energy generated by the WT to ensure maximum power extraction [15]. 

To develop the electronic converters used to control these turbines, it is necessary to use WT 

emulators (WTEs) to emulate their behavior in laboratory tests [16]-[18]. With WTE, converter 

designs, and algorithms to monitor the optimal state of the WT under different environmental 

conditions can be tested, also called maximum power point tracking (MPPT) [19]-[21]. Tests under 

different environmental conditions are necessary because WE are unpredictable and therefore 

difficult to manipulate in the laboratory, as there is no standard wind profile for a day of operation; 

in other words, wind has a random behavior that makes it difficult to know a priori the optimal 

operating state of the turbine. However, the typical ranges of wind profiles for a geographical location 

may be known. For example, Colombia has the best wind potential of the Guajira Peninsula because 

of its wind speeds that vary between 7.4 and 16.6 m/s [22]-[24].  

Simulating the average conditions that could occur at a given location involves adopting one of 

two options for the design of the power treatment system in the WT. The first option is to have a 

wind tunnel perfectly adapted to the size of the WT you wish to test. This condition is difficult 

because the instrumentation for this type of solution is complex to guarantee the wind speed required 

in the specific test. The second option depends on the implementation of an emulation bank with a 

mechanical coupling between a motor-generator. The generator is a three-phase permanent magnet 

synchronous generator (PMSG), which is commonly used in small-scale WT applications, the motor 

is a DC motor and the generator is a three-phase PMSG type [25]-[27]. The WTE takes into account 

the typical curve of the power coefficient C P (λ, β) of a specific WT, which depends mainly on the 

wind angle of attack and radius. This WTE makes it possible to test the power output of different WT 

sizes at different wind speeds without the need for complex instrumentation to ensure correct wind 

speed. 

Therefore, this paper presents the design and implementation of a WE generation system 

(WEGS) based on the WTE [19]. The WEGS in question is composed of two mechanically coupled 

electrical machines, one acting as a motor that emulates the rotational motion due to wind dynamics 

in the WT and the other acting as a generator [28]. This work presents a WTE, having a main machine 

DC motor driven by a buck converter, and a control system in hardware-in-the-loop (HIL) 

configuration based on dSPACE 1104 card. For the modeling of the wind power system, MATLAB® 

/ Simulink® software has been used, taking into account all the characteristics of a real WT. For the 

communication between the microcomputer and the experimental bench, a DSP320F28335 

microcontroller from the manufacturer Texas Instruments was used. The results obtained 

demonstrated the efficiency of the proposed WTE, given that the behavior of the experimental bench 

was the same as that of the theoretical calculation results. 

This work has been prepared to be in four sections after the introduction section. Section 2 

presents the wind dynamics in WTs and the applied MPPT technique. Section 3 presents the needed 

materials and methods. Section 4 presents the obtained results to prove the accuracy of the studied 

WTE. Section 5 concludes the current study. 

2. Wind Dynamics in WTs and MPPT Technique 

The understanding of wind dynamics in WTs has great importance, because WTs have a higher 

efficiency due to the restrictions imposed by Betz's limit [22], [29]; i.e. no three-bladed cross-section 

WT has an efficiency higher than the maximum possible efficiency according to the power 

coefficient (𝐶𝑝) curve (0.593), i.e. how much of the effective wind power can be transferred to the 

mechanical power in the WT rotor; this restriction is physically explained in [22], [30], [31]. After 

several tests with rotors connected to the WTs and a sweep of the wind speeds, graphs of the 𝐶𝑝versus 

blade tip speed are obtained at different angles of β, examples of the three-bladed WTs are shown in 

Fig. 1. 
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Also, the general model of the WT rotor (equation (1)) was taken from [17], [32], [33], in which 

the 𝐶𝑝 equation (equation (2)) is presented; it is a relationship between WE and the mechanical power 

that is transferred to the turbine rotor. Equation (2) applies to all three-bladed turbines in which the 

parameters Ci (i=1.. 6) have been found utilizing a regression algorithm. In addition, in equation (2) 

β is the angle of attack of the blade cross-section concerning the wind direction; in small-scale WTs, 

this value is fixed and is generally close to zero because, according to Fig. 1, this is the angle at which 

the WT achieves the highest efficiency. λi is a relationship represented in equation (3) and λ is the 

WT blade tip speed which depends proportionally on the blade radius in m. ω is the angular velocity 

of the turbine rotor with units in rad / s, and inversely proportional to the wind speed Vwind in m/s as 

seen in equation (3): 
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Fig. 1. Power coefficient for different values of λ 
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𝐶𝑝(𝜆, 𝛽) = 𝐶1 ( 

𝐶2

𝜆𝑖
− 𝐶3𝛽 − 𝐶4)𝑒−𝐶5/𝜆𝑖 + 𝐶6𝜆𝑖 (2) 

Where it is defined as 

 1

𝜆𝑖
= [(

1

𝜆 + 𝑐6𝛽
 ) − (

𝑐9

𝛽3 +  1
)] (3) 

The c1-c9 coefficients are designed and adapted to describe a specific turbine. To calculate the λ 

at the end of the blade, the expression given in [12] as presented in equation (4) is used, where ωr is 

the angular velocity of the rotor in (rad/s). Fig. 2 shows typical values of Cp (λ) for different wind 

rotors as a function of λ. 

 
𝜆 =  

𝑅𝜔𝑟

𝑉
 (4) 

It should be clarified that in our case, the developed WTE considers the WT controlled by stall 

or with control by aerodynamic design (stall control), where the pitch angle remains constant during 

the entire turbine operation, and therefore, the 𝐶𝑝 will depend only on the specific speed coefficient 

λ, therefore the values in Fig. 2 are considered valid. 
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Fig. 2. 𝐶𝑝 for different models of WTs as a function of λ 

To determine an analytical expression of the 𝐶𝑝 of the WTs to be emulated, which are one-

bladed, two-bladed, three-bladed, and Darrius, we looked for 3rd order polynomials as in Table 1, 

that represent the curves in Fig. 2 as a function of the λ which will be one of the input variables of 

the emulator control program, obtaining the following system of equations. 

Table 1.  The analytical expression of the 𝐶𝑝 of the WTs 

Type 𝑪𝒑 equation λ equation 

One-Blade Cp (λ)=−0,00002λ−0,0023λ + 0,0819λ − 0,2309 For 9,1≤λ ≤ 18 

Two-Blade Cp (λ)= 0,0005λ− 0,0227λ + 0,2984λ − 0,7782 For 6,9≤λ≤ 14,5 

Three-Blade Cp (λ)= 0,0023λ − 0,069λ + 0,6321λ − 1,3542 For 5,3≤λ≤ 11,2 

Darrius Cp (λ)= 0,0052λ − 0,1181λ + 0,7984λ − 1,2952 For 3,4≤λ≤ 7,4 

 

Applying equation (1) and considering the speed of rotation of the WT (ω), it is possible to 

determine the mechanical torque exerted by it (T) employing the following equation: 

 
𝜏𝑟 =  

𝑃𝑤𝑖𝑛𝑑 𝐶𝑝(𝜆)

𝜔𝑟
 (5) 

Finally, substituting the parameter Cp (λ) in equation (5) with equations in Table 1 as 

appropriate, it is possible to obtain the torque generated by a WT as a function of the parameters air 

density (ρ), wind speed (v), radius of gyration (R), height (H) (for the Derrius rotor) and specific 

speed (λ) of the four models considered as shown in equations (6) and (7), then they will be used as 

equations of "torque to develop" in the impulse motor that simulates these turbines. 

 𝜏𝑟𝑜𝑡𝑜𝑟 =   
𝐶𝑝(𝜆)𝑃𝑤𝑖𝑛𝑑 

𝜔𝑟
 =

𝜌𝜋𝑅3𝑣𝑣
3𝐶𝑝(𝜆) 

2𝜆
 (6) 

 
𝜏𝑟𝑜𝑡𝑜𝑟 =

0.67𝜌𝑅2𝑣𝑣
2𝐻𝐶𝑝(𝜆) 

𝜆
→ Darrieus (7) 

One of the most widely used techniques in the literature for maximizing power extraction in 

renewable energy sources is tip speed ratio control (TSR) [34]-[36]. In this method, the maximum 

power of the wind turbine is obtained by maintaining the speed ratio at the end of the blade λ at its 
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ideal value λ0. The principle of operation of the MPPT technique with an optimal speed ratio at the 

tip of the blade is illustrated in Fig. 3 [36], [37], in which the wind speed Vwind is measured and used 

to calculate the reference speed ωr Generator as a function of the optimal ratio λ0 and the turbine 

speed ratio nBV / nAV. The speed of the generator is controlled by power converters and will be equal 

to its steady state reference, in which the MPPT is reached.   
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Fig. 3. Characteristics of turbine power as a function of the rotor speed for a series of wind speeds 

3. Materials and Methods 

3.1. WTE Method 

The emulation of a WT must be configured, as shown in Fig. 4. This scheme presents a motor-

generator coupling for the emulation of a WT that considers the characteristics of the system. This 

system requires the calculation of the reference angular speed of the engine given by equation (8). 
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Fig. 4. The WTE interface 
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𝜔𝑟 =  

𝑃𝑤𝑖𝑛𝑑 𝐶𝑝(𝜆,𝛽)

𝜏𝑟
 (8) 

The system requires the acquisition of the torque measurement τr (nm newton meter), the 

calculation of the power generated by the Pwind (W), and the power coefficient Cp (λ, β) (non-

dimensional), as indicated in [38]-[40]. Also, the calculation of the reference speed ωref (rad /s) 

should be applied to the DC motor speed control board to ensure correct emulation of the required 

wind conditions.  

It should be noted that the processing of measured information of the motor-generator coupling 

should be processed in real-time by an acquisition system that allows you to make the necessary 

variations to emulate real conditions. This interface can be implemented with typical signal 

processing devices (acquisition cards, dSPACE, etc.). As presented in later sections, the system 

implemented for the emulation platform consists of a dSPACE 1104 control system as an acquisition 

card, which in turn sends the data to the control desk for processing and interaction. 

Fig. 5 shows the procedure to emulate the complete wind system. Its main input is the specific 

wind speed to be emulated and is given by the user, also is given by the system constants as the 

parameters of Cp (λ, β), the rotor radius, and the air density ρair. Some variables are also entered but 

not given by the user but acquired by sensors, such as torque measurement and angular speed and 

finally the output is the reference speed that is applied to the card that controls the speed of the DC 

motor ωref. 

3.2. Mathematical Modeling of the Switched Converter 

Since the wind turbine generates voltages lower than those demanded by the load, the suitable 

converter for the application is a DC-DC converter buck-up, which is coupled after a three-phase 

rectifier bridge with its respective filtering capacitor Cin [41]-[43]. The main function of this 

converter is to condition the power of the WT and in this case, deliver it to a resistive load, depending 

on the required voltage levels in the output capacitor Co; typically, the control that is designed for 

this type of application is the PI controller [44]-[46]. 

The step-up DC-DC converter of Fig. 6, whose mathematical model is given by the averaged 

model, has three active elements that are: inductance, input capacitor, and output capacitor, which 

are associated with the three states of the converter, the coil current iL(t); the input capacitor voltage 

vCin (t); and the output capacitor voltage vC0 (t), vC0 (t), vCin (t), iL(t) [47]. 

From the modeling of converters for control purposes presented in [48], a mathematical 

representation in state space can be obtained, as shown in equation (9). 

 

𝑥(𝑡) =̇

[
 
 
 
 
 
 0 −

1

𝐶𝑖𝑛

0

1

𝐿
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𝑥(𝑡) + (
−

𝑖𝑖𝑛
𝐶𝑖𝑛

0
0

) (9) 

For this case, the state space is presented as a function of regulating the power extraction of the 

wind turbine, that is, it is desired to control the input current to the converter associated with the coil 

current iL(t); Likewise, the states of the system x (t) are made up of vCin (t), iL(t)t and vC0 (t). Taking 

into account the nonlinearity of the system, a linear approximation to the model evaluated at 

equilibrium is required to guarantee the correct design of a PI controller, as proposed in [49]. The 

equilibrium points of the system can be predicted when the converter has stabilized, that is when 

𝑥(𝑡) = 0̇ , thus 𝑉𝐶𝑖𝑛

∗ (𝑡) = (1 − 𝐷)²𝑅0𝑖𝑖𝑛, 𝐼𝐿
∗ = 𝑖𝑖𝑛, 𝑉𝐶0

∗ (𝑡) = (1 − 𝐷)𝑅0𝑖𝑖𝑛. 

These values are replaced in the linear model evaluated at the equilibrium points. From the 

model presented in equation (10), we proceed to design a PI controller that meets the desired criteria 

for regulating the converter current from a reference given by an MPPT algorithm. 
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Fig. 5. Procedure for emulating the WT 

  

 

L 

R0 

C0 Cin 

I L 

u(t) 

 

Fig. 6. Boost DC-DC converter diagram 



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

705 
Vol. 5, No. 2, 2025, pp. 698-712 

  

 

T. Boutabba (Design of a Small Wind Turbine Emulator for Testing Power Converters Using dSPACE 1104) 

 

4. Results and Discussions 

4.1. Implementation of a WTE Platform with an MPPT Algorithm 

Fig. 7 presents a motor-generator bank, the DC motor is controlled employing a speed controller 

from the dSPACE 1104, this measures the feedback using a current and voltage sensor used to 

estimate speed value and delivers a DC voltage proportional to rotor speed. The generator is coupled 

to the motor with a ball screw shaft flexible coupling, in addition, the angular velocity and torque 

values were acquired with a control desk card, in which the reading is done through each of the ADC 

ports; likewise, the analog signals with filtered PWM ports, necessary to monitor the reference 

angular velocity ωref and the power coefficient CP (λ, β), are reproduced. The PMSG and DC motor 

parameters are listed in Table 2. 

Table 2.  PMSG and DC motor parameters 

PMSG PMDC 

P=220 W 

Ld =0.00012 H 

J=0.0016 Kg m2 

Vn=24 V 

In=13.6 A 

R=0.0675 Ω, 

Lq =0.0008 H 

φf=0.0441 Wb 

P=3 

Cn=5 N.m, 

f = 388.18*10-6 Nm/s 

Vn=24 V 

In=9~11 A 

P=250 W 

N=2650 RPM 

Cn=5 N.m 

 

 

Fig. 7. The hardware setup of the system 

Fig. 8 presents the complete emulation platform considering the power electronics interface and 

the MPPT algorithm. Also, a 3-phase rectifier is connected to the generator terminals which have a 

filtering capacitor of the rectified signal, and then a boost type converter which is controlled with a 

PI controller to regulate current. This controller is designed to follow the speed references delivered 

by the MPPT algorithm in search of a maximum power point; both the control and the MPPT 

algorithm are implemented in the dSPACE 1104 card.  

4.2. Experimental Results 

The experimental platform was configured to emulate types of WTs (one-blade, two-blade, 

three-blade, and Darrius) in particular conditions in which the coefficients for the calculation of the 

power coefficient are given in Table 1. These parameters allow the emulation of these turbines. These 

results illustrate the WT's response to a random wind profile presented in Fig. 9, in which the WT 

rotation follows this wind variation. Thus, observing that the estimated mechanical power of the WTs 

and the power generated depend on the WT rotation (since the rotation determines the WT operating 
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point in the Cp versus TSR curve) and, consequently, also following the wind variation. The Cp is 

practically constant, which is characteristic of operation at the MPP. The oscillations presented in Cp 

are due to abrupt variations in wind speed, causing its TSR to assume high values for fractions of a 

second, as a result of the turbine rotating at high speed and soon the wind suffers a sharp drop, as 

predicted by Equation (4). 
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Fig. 8. The complete emulation platform with the power electronics interface and the MPPT algorithm 

From the procedure presented in [50], [49], [51], a PI controller was designed for the speed loop 

of a boost converter. The idea of implementing a search algorithm for the MPP, type TSR control, 

requires that the variable delivered by it serves as a reference for a controller of a switched converter 

(in this case it is a speed control), the control is a controller PI in discrete time since it is implemented 

in a digital signal processor, together with the MPPT algorithm. 

 

Fig. 9. Wind speed signal 

Fig. 10 shows the results of the Cp simulations for the different types of wind turbines presented 

in the previous section. For the system in question, the ideal would be that the value of Cp is always 

stable, reaching very close values even with many variations of the wind value. The three-bladed WT 



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

707 
Vol. 5, No. 2, 2025, pp. 698-712 

  

 

T. Boutabba (Design of a Small Wind Turbine Emulator for Testing Power Converters Using dSPACE 1104) 

 

and the Darrius both have an average Cp value very close to 0.3 throughout the simulation and, 

therefore, for the entire range of wind speeds visualized in Fig.  9. The 𝐶𝑝 of the WT with wind value 

variation is shown in Fig. 11. Where the 𝐶𝑝(𝜆, 𝛽)  Parameters Ci (i=1.. 6) in equation (3) are chosen 

to fit very small power WT. 

 

Fig. 10. Characteristics of turbine power as a function of the rotor speed for a series of wind speeds 

 

Fig. 11. Response of the power coefficient 

In Fig. 12 and Fig. 13, the results of the simulations of the estimated torque values and the wind 

power for the different WTs presented in the previous section are presented. The values of these 

torques and powers are relatively close for the four emulated WTs. It can be seen that for the three-

bladed and Derrius WTs, the value of the estimated torques and wind power are very close and higher 

than the one-bladed and two-bladed wind turbines, due to the high value of Cp of these two see Table 

1. Fig. 14 shows the response of the generated DC voltage of the four emulated WTs, which is 

proportional to rotor speed and with a random wind profile. 

The corresponding windmill speed ωg, estimated rotational speed ωest, and the optimal speed are 

shown in Fig. 15. It is observed that with a variable wind speed Fig. 9, the motor speed follows the 

estimated rotor speed. To investigate the maximum power extraction from the developed small WTE, 

the TSR was recorded for this variation in wind speed. The TSR reached the optimum TSR (ωopt) 

along with the variation of the wind.  
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Fig. 12. Response of the estimated torque 

 

Fig. 13. WT power 

 

Fig. 14. Response of generated DC voltage 
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Fig. 15. Response of the rotor speed under variable wind speed 

5. Conclusions 

In this work, an emulator bench was presented that reproduces the behavior of a WT under 

different wind profiles and load conditions, thus becoming independent of the existence of weather 

conditions that allow the test to be carried out. The type of WT can be configured simply by 

incorporating the corresponding polynomial coefficients in the control system that controls the 

variable speed drive. From the review of the cited references, the theoretical calculations carried out 

and the simulations and experimental tests carried out, the following conclusions can be drawn:  

a) A new system has been presented for the emulation of different kinds of WTs, consisting of the 

series interconnection of a variable DC voltage source, a resistor of power, and a permanent 

magnetic DC motor and PMSG;  

b)  It has been shown, through theoretical developments, simulations, and experimental tests, that 

the emulator can reproduce the power curves of a WT; 

c)  The presented emulator is useful for carrying out laboratory tests of the power converters used 

to control the WT generator;  

d) The novelty of the emulator consists of working in an open loop, while speed emulators work 

in a closed loop, so the proposed emulator has an intrinsic structure more like WTs. 
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