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The Columbia space shuttle catastrophe in 2003 served as the inspiration
for this paper’s improved mathematical model, which includes a nonlin-
ear damping Neumann boundary condition. By creating and examining a
modified heat equation with piecewise nonlinear source terms and damping
Neumann boundary conditions, the study seeks to investigate the incident’s
heat transport dynamics. To ensure that the problem is well-posed, we pro-
vide strong mathematical arguments for the existence of solutions both lo-
cally and globally. In addition, we use numerical simulations to show how
the nonlinear boundary conditions affect heat dissipation and to confirm the

Existence;
Nonlinear Boundary Condition

theoretical results. The findings advance our knowledge of thermal model-
ing in aircraft applications and offer greater insights into heat propagation
under such conditions.

This is an open access article under the CC-BY-SA license.

1. Introduction

The study of partial differential equations (PDEs) has been a key focus in mathematical anal-
ysis, particularly in understanding existence, uniqueness, and stability of solutions across various
applications [1]-[4]. While our work primarily examines a nonlinear heat equation with damping
Neumann boundary conditions, fractional differential equations have been widely explored for their
ability to model memory-dependent processes in physics and engineering [5]-[11]. Recent advances
in reaction-diffusion problems and boundary-value analysis highlight the significance of nonlinear
terms in influencing solution behavior, including blow-up and stabilization phenomena [12]-[18].
Techniques such as energy estimates and integral boundary conditions have been applied to vari-
ous nonlinear PDEs, ensuring well-posedness and guiding numerical approximations [19]-[26]. Al-
though fractional calculus is not the central theme of this study, its methodologies, including the
Faedo-Galerkin method and energy-based approaches, remain crucial in addressing complex systems
governed by nonlocal operators [27]—[30].

Thermal insulation foam was applied to the shuttle’s primary fuel tank to stop ice from forming
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when liquid hydrogen and oxygen were added. Unfortunately, on February 1, 2003, the shuttle’s
re-entry into Earth’s atmosphere resulted in the Columbia disaster. The orbiter’s left wing was struck
by a piece of foam insulation that had broken off from the external tank, causing the catastrophe.
In particular, a piece of foam about the size of a suitcase broke off and struck the Columbia’s left
wing’s reinforced carbon-carbon (RCC) panels. According to ground tests by the Columbia Accident
Investigation Board, this incident most likely created a hole that was six to ten inches (15 to 25 cm)
in diameter, which would have allowed hot gasses to penetrate the wing upon re-entry.

Subsequently, a mathematical analysis was conducted to investigate the heat transfer mechanisms
associated with the breach in the shuttle’s wing, which resulted from the foam impact. To assess
the thermal behavior during re-entry, comprehensive simulations and numerical computations were
carried out, incorporating various physical and chemical phenomena shown in Fig. 1.

Wings Wings

xternal Tank

ayload Ba

Main Engines
SRB
Fig. 1. Space Shuttle Columbia

The study specifically focused on the role of radiative heat flux, which was identified as the
dominant factor in heat propagation through the damaged section of the left wing Fig. 2. The heat
transfer model considered the interactions between conduction, convection, and radiation, along with
the impact of high-temperature gas dynamics and material degradation processes. These elements
were integrated into the mathematical framework to accurately represent the thermal response of the
shuttle under extreme aerodynamic heating conditions [31].

<DLocati0

Fig. 2. Left Bipod Foam Ramp

Left Bipod Foam Ramp

The Columbia disaster prompted significant reforms in the space shuttle program, prioritizing
enhanced safety measures and risk mitigation strategies. One of the most critical improvements was
the implementation of rigorous inspection protocols to thoroughly evaluate the shuttle’s Thermal
Protection System (TPS) before and during missions. Particular emphasis was placed on detailed
assessments of high-risk components, such as the Reinforced Carbon-Carbon (RCC) panels, which
play a crucial role in shielding the shuttle from extreme re-entry temperatures.

To further mitigate risks, in-orbit inspection capabilities were introduced, allowing astronauts
to assess the structural integrity of the TPS while in space. These inspections were facilitated by
advanced imaging technologies and robotic systems, enabling the identification of potential damage
that could compromise mission safety. Additionally, extensive research and development efforts were
undertaken to devise effective on-orbit repair techniques. Astronauts were equipped with specialized
tools and innovative repair materials designed to address specific types of TPS damage encountered
during missions. These advancements significantly bolstered the resilience of space shuttle operations
and contributed to improved safety standards in future space exploration endeavors [31].
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Motivated by these developments, we were inspired to develop a mathematical model [32]-[35]
of the following form:

ur — Au =0, (z,1) € @< (0,T),
u(z,0) = o(z), z e, (PP)
%:; — 0, (w,t) € To x (0,7,
%77; :_‘ut|q—2ut+up’ (z,1) € 1 x (0, 7).

The boundary conditions on I'g and I'; in the context of heat transfer typically represent different
types of thermal interactions at the system boundaries. Specifically, I'g denotes a boundary where heat
is neither entering nor leaving the system, often referred to as an adiabatic boundary.

ou
oy ="

The condition implies that there is no heat flux normal to the boundary, ensuring that the temper-
ature gradient in the outward normal direction is zero. Consequently, no heat transfer occurs through
I'g. On the other hand, I'; represents a boundary where heat exchange with the surroundings takes
place.

ou _
— = —|u|? 2y + uP

on

The boundary condition defines the heat flux at I'y. The term — ]ut|q72 u; characterizes the
convective heat transfer, which depends on the magnitude and direction of the temperature gradient
%17; at the boundary, acting as a damping term. Meanwhile, the term u? represents an external heat
source, contributing to the heat distribution in the system.

The values of ¢ and p in the boundary condition equation play a significant role in determining
heat transfer behavior at the boundary. Specifically, ¢ influences the dependency of the convective heat
transfer term on the magnitude of the temperature gradient ‘3—;‘ at the boundary. The term |ut|q_2 Uy

represents convective heat transfer, where the exponent \ut|q72 regulates how the magnitude of the
temperature gradient affects the overall heat flux. Meanwhile, the parameter p determines the contri-
bution of the temperature distribution within the system to the heat transfer process at the boundary.
The term uP serves as a heat source, influencing the rate of heat exchange at I'; and altering the
thermal behavior of the system [36]—[38].

The organization of this paper is as follows: Section 2 is dedicated to establishing the existence
of the linear problem u. In Section 3, we present the existence of the main problem along with an
analysis of blow-up phenomena and global existence. Finally, in the last section, we discuss numerical
simulations of solutions for the main problem.

2. Existence of Heat Equation

In this section, we present the heat equation with piecewise nonlinear dynamical boundary con-
ditions. We begin with the formulation of the problem (P;) and subsequently analyze its existence.
This section is particularly significant as it focuses on establishing the existence of a solution using
the Faedo-Galerkin method.
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2.1. Formulation of the Problem

In this subsection, we define the mathematical model governing the heat equation with piecewise
nonlinear boundary conditions. The problem is formulated as follows:

up — Au = 0, (x,t) € Q x (0,7),
u(,0) = (), e (P1)
%:07 (z,t) € Ty x (0,7,
00 = —Ju|" 2w+ hiw, 1), (w,1) €T1 x (0,7).

where u = u(x,t), witht > 0 and x € Q. The domain €2 is a bounded open subset of R" (n > 1)
with a regular boundary 02, satisfying I') N T';y = () and 9 = I'o UT';. Here, g represents a given
forcing term acting on I';.

2.2. Results

In this subsection, we present key theoretical results related to the existence and properties of
weak solutions to the heat equation with nonlinear boundary conditions. We begin with a fundamental
lemma that establishes the necessary function spaces and integral formulations.

Lemma 2.1 Let & € LY ((0,T) x I'1), and suppose that u is a weak solution of the problem

ug — Au =0, (z,t) € Qx(0,T),
u(z,0) = p(x), x €,

=0, (z,t) € Ty x (0,T),
%Z = 57 (ZL‘,t) € Fl X (OaT)

That is, u satisfies
ue L™ (0,T; HE (),

such that
ug € L2(0,T; L*(Q)) N L™((0,T) x I'y),

and for all ¢ € H} () N L™(T';) and ¢ € Ce((0,T); H'(£2)), we have

/Qutqb—l—/QVu-qu: F1§¢:0.

Then, we have the regularity result
ue C([0,T]; H'(2)).

Moreover, the following energy identity holds for 0 < s <¢ < 7T~
1 2 1 2 Lo !
S IV = 5 IVu) 3+ [l dt= [ [ gudadr
s s JI'

Proof 1 Let F = L%(Q), E = H*(Q), and B = L™(T'1). To prove the existence and uniqueness of
the solution to problem (P;), we consider a sequence (wy, ), in the space H(£2) N L™(T'1). These
vectors are linearly independent, and every finite combination forms a dense subset in H'(Q2) N
L™(T'1). Moreover, they are orthonormal in L?(2). Let ug,, € span{wy, ..., wy, } such that ug, — g
in L2(9).
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Lemma 2.2 Let ) be a bounded and regular domain in R"”, where I'; is also bounded. Then, the
space H(Q) N L™(T) is dense in H*(2).

Proof 2 It is sufficient to prove that H' ()N L>(T;) is dense in H!(€2). Letu € H'(2), and define
the truncated sequence (uy, )nen as follows:

u, if [u| <mn,

fuf> if lu| > n.

Up =N — [2n—(u+n)+]+ = {
Then, by applying the following lemma, we obtain the desired result.

Lemma 2.3 Let u € W!(Q). Then, the functions u™, u~, and |u| belong to W(12), and their
derivatives satisfy

Dut {Du, if u > 0,
u =

0, if u <0.
0 if
Dy — , if u >0,
—Du, ifu<0.
Du, if u >0,
Dlu| = <0, if u =0,
—Du, ifu<0.

Proof 3 For ¢ > 0, define the function

1
(u? +e%)2 —¢g, ifu>0,
o) = Jros
0, ifu <0.

By applying Lemma 7.5 (from [39], [40]): Let f € C1(R), with f/ € L>°(R) and let u € W1(Q).
Then, the composite function f o u belongs to W (£2) and satisfies

D(fou) = f'(u)Du.

Applying this result, for any test function ¢ € C3(€2), we obtain

D
/ fe(u)Dpdr = —/ uiul dx.
Q u>0 (u? 4 €2)2

Taking the limit as ¢ — 0, we obtain

/quDgodx = —/ pDudzx.
Q u>0

Thus, we have established that Dut, Du~, D|u| exist for u™. The remaining results follow directly
since
u =—(—u)", |ul=ut—u".

In what follow, we construct approximate solutions for the main problem using a Galerkin-type
method. By considering a suitable basis in the function space and applying truncation techniques,
we obtain a sequence of finite-dimensional approximations that satisfy energy estimates. These esti-

mates play a crucial role in proving the existence of weak solutions in the Sobolev space framework.
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We further employ compactness arguments and monotonicity techniques to ensure convergence and
derive the necessary regularity properties. To this end, we have the boundary property

uﬂag = (u!aﬂ)+, Yu € HY(Q).
Moreover, the inequality
ol ey < lolloc, Yo € HY(Q) N L¥(Q),

can be established using density arguments in H'(2) and the trace theorem. This ensures that u,, €
H() N L>(T'1), and it is well known that

U, —u in HYQ).

2.2.1. Approximate Solutions

For a fixed n € N, we seek approximate solutions to problem (P;), i.e., solutions of the finite-
dimensional problem

n
up(t) = Zgnjwj, Vn € N,
j=1
With the initial condition
n
un(0) = Zgonjwj, Vn € N,
j=1
such that
u,(0) = @(x) in HYQ).

This leads to the problem

((un)t7wj) - (Aunij) =0, J=14 » 1,
€]
un(0) = uop,
By simplifying (1), we obtain
((un)t’ w]) + (vun7 vw]) + fFl |(un)t|m_2(un)twj = fFl hw]’ ] = ]" cte 7”’ (2)
Un(0) = ugp.
Introducing
9n = (gnh S agnn)Ta gon = (gOnb cee agOnn)Ta
A = ((Vwi, Vwg)); oy Bo= (w1, w,)",
Cnlg) =g+ | 1Bu(@) g™ *Bu(x) -gBn(z) dz, Vg eR",
1
D, (t) = / hBy(z)dz.
Iy
Thus, problem (2) can be rewritten in the following form:
Ch ((gn)e(t)) + AnBn(t) = Dn(t), 3)
gn(o) = gon-
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Since the basis (wy, ), belongs to H(Q) N L™(I'y), it follows that w; € L™(Ty) forall j = 1,...,n.
Consequently, | B,,| € L™(I'1) and C,, is continuous, satisfying

1 1
Cn =Vep,, where ¢,(g9) = 5]9\2 + m/r | By (x) - g|™dx.
1

It can be easily shown that ¢, is strictly convex because both terms in its definition are strictly convex.
Furthermore, for any g # 0, we have

cn(9) _

By applying the homeomorphism property, we reformulate problem (3) as

{(gnw) = O (= AnBa(t) + Da(t), @
9n(0) = gon-

Since
C (= AnBn(t) + Da(t)| < | Anll|Bnl + | Dl

and using previously known results, we conclude that D,, € L'(0,T). By applying Carathéodory’s
theorem, we obtain the existence of a local solution on (0, t;) for some ¢ > 0.

2.2.2. Energy Estimates

Multiplying (2) by g,,; and summing over j = 1,...,n, we derive

{((un)t,un) + (Vn, Vun) + [r ()™ (un)eun = [p, b, 5)

un(0) = pn.

Applying Gronwall’s inequality, we obtain

Lt +2 [ 19l 2 [ [t 2 < (25 [ 1003 + L)) emmeente
Eun2 e Jo Un |9 e Jo Jr, Un )t Up )tUn > 820 2 890”26 .
(6)

Thus, the sequence (u,,) satisfies the necessary estimates to ensure the existence and uniqueness of
weak solutions in H'(€2).

3. Main Results

This section presents fundamental results concerning the existence of solutions for the parabolic
problem with nonlinear boundary conditions. We begin by establishing the existence of solutions to
the linearized problem, which serves as a foundation for addressing the nonlinear case. The Faedo-
Galerkin method is employed to construct approximate solutions, ensuring their convergence. Addi-
tionally, energy estimates are derived to analyze stability and regularity. These results provide a basis
for further investigations into the qualitative behavior of solutions, including blow-up and global ex-
istence.

3.1. Existence of the Main Problem

This subsection is devoted to the study of a parabolic problem with nonlinear boundary condi-
tions involving both damping and source terms. We consider the problem in a regular and bounded
domain

Q=(0,T)xQ, whereQCR", T>0.
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The boundary of the domain is decomposed as
o0 =TyuUly, LoNTy = 0.
We analyze the following problem:
ur — Au =0, (x,t) € Q@ x (0,7),
u(z,0) = p(x), x €, P,)
S =0, (z,t) € Ty x (0,T), P
gf;; = —\ut|q*2ut + u?, (.%',t) el x (O,T).

Definition 3.1 A weak solution of the main problem (P,) is a function u such that
1. w € L>(0,T; HY(Q)) and u; € L?((0,T) x Ty).

2. The trace of w on (0,7") x 02 has a distributional time derivative in (0,7") x 02, belonging to

L1((0,T) x 09).
3. Forall ¢ € X, where
X :={ueH(Q)|ulr, € LYT1)},

and for all ¢ € [0, T'], the following integral identity holds:

(u,8) + (Vit, Vo) + /

ry

]ut|q_2ut¢d:ﬁ:/ uP o dz.

I

4. The initial condition is satisfied in the weak sense
u(0) = .

Lemma 3.2 Letg > 1and 1 < pg < r, where

2=l - fp >3
T = -

n—2 7

o0, ifn=1,2.
Consider the space
Fo={ueL®(0,T; H(Q), wu € LI((0,T)xT)}
endowed with the natural norm

2 2 2
Jully = HUHLOO(O,T;Hl(Q)) + HutHLq((O,T)XFl) .

Then, the embedding
F— C(0,T;LP(T'1))

is compact.
Proof 4 Lety € F. Then, by the trace theorem, we have
y € L%(0,T L (I'y)).
For any 0 < s <t < T, applying the interpolation inequality, we obtain

1-m

1y() = yDllpyr, < llyls) —y(®) -

1
iy ly(s) —y@I,r"  ¥m € (0,1) such that — = m+

(N

(®)

©)

1—-m

r
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Since m > 1, using Holder’s inequality twice, we estimate

t
1) = 9@, < [ Nl g,
S

¢
<) | s,
< Ol = sl el ooy
for some positive constant C'(I'1). Then, by the trace-Sobolev embedding, we obtain
ly(s) = yOllyr, < (C@D)™ ¢ = 57 [9ell ooy V() = Vy@IIL™.
Thus, for a bounded sequence yj in f, the sequence is equicontinuous in
C(0,T; L™ (T')).

Since the embedding H'(£2) < LP°(T'1) is compact (using the standard partition-of-unity technique),
the sequence (yx(t))y is relatively compact in LP°(T'y) for all ¢ € [0, T]. Applying Ascoli’s theorem,
we conclude that yy, is relatively compact in

C(0,T; L (I'y)).

This completes the proof.

Theorem 3.3 Letqg > 1,2 <p <r,andq > - +71’7p. Then, there exists a time 7" > 0 and a weak
solution v of (P,,) in @ such that

we C0,T; H(Q)), wu € L2((0,T) x Q) NLI((0,T) x I'y). (10)

Furthermore, the following energy identity holds forall 0 < s <¢ < T*:

1 t t
2uwu§|§+/ (lewllg + el 2, ) dt_// uPuy dadt. (11
s s JIn

Moreover, the existence time 7" depends on the initial condition and parameters, given by

T=T (”(pH%{l(Q)a q,D, Qa Fl) )

and it is a decreasing function in the first variable.

Proof 5 We base our proof on the Schauder fixed-point theorem, which states “Let E be a locally
convex topological vector space (LCTVS) such that any convex, closed, and bounded subset A C F
has a compact closure. If u : A — A is a continuous mapping, then u admits at least one fixed point.”
To apply this theorem, we define

X ={ueC(0,T;H'(Q)), wu e LY(0,T)xT1), u(0)=p(z)}, (12)
Br = {“ €X| ||U||%oo(o,T;H1(Q)) + ||Ut||%q((0,T)Xr1) < R} . (13)
We define the mapping

o X=X, v=o¢(u),
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Where v is the solution of the following problem:

v — Av =0, (x,t) € Q% (0,T),
v(x,0) = p(z), x € Q, (PP)
%Z =0, (x,t) € Ty x (0,7),
2yl P, (2,1) €Ty x (0,T).

Since B, is nonempty (as ¢ € Bg and satisfies ||¢|| z1(q) < Ro < R), and is closed and convex, we
proceed to show that ¢ : Br — Bp, ensuring 1. ¢ maps into itself for sufficiently large R and small
T. 2. ¢ is continuous on Bg. 3. ¢(Bpg) is relatively compact in X.

e Step 1: Showing ¢ Maps Into Itself.

For v € Bg, multiplying (PP) by v, integrating over (), and using integration by parts, we obtain

1 t t 1
oIvelB+ [ (el + ) = [ [ ot 519003, (14)
0 0 JI

Applying Holder’s inequality to the right-hand side

1
o

t 1 5 T Y
uPue + S [Vellz < ut? ) o
0 Fl 2 0 1_‘1

Since % < r, using the trace-Sobolev embedding, we estimate

t 1 T
/ / o+ | VelZ < CRP / Jor
0o Jry 2 0

Applying Young’s inequality

g1+

1
gt + §HV<P||%

1 ¢ 1 1 o
9o+ [ (1ol + Llulty, ) < 38 + 07RO, (15)
Thus, choosing R sufficiently large and 7" sufficiently small, we ensure v € Br, completing Step 1.
e Step 2: ¢ is Continuous on Bp.

For u,u € Bp, defining w = v — v, we consider

wy — Aw =0, (z,t) € Qx(0,T),
w(z,0) = p(z), x €,
g =0, (z,t) € Ty x (0,T), (PPP)
%—;‘7’ = —|vg|7 20 + |0y %0, + P —uP,  (x,t) € Ty x (0,7).
u)

Following similar estimates as in Step 1, we show that ¢(u) — ¢ (@) vanishes as u — u — 0, proving
continuity.

e Step 3: ¢(Bp) is Relatively Compact in X.

By Lemma (8), the embedding F — C'(0,7; LP°(T'1)) is compact, ensuring the existence of a
Cauchy subsequence. By continuity, we conclude that ¢(Bp) is relatively compact. Thus, apply-
ing Schauder’s theorem, we obtain a fixed point u = ¢(u), proving the existence of a weak solution.

3.2. Global Existence Results

In this subsection, we establish sufficient conditions ensuring the global existence of weak so-
lutions to the problem (P,). Using energy estimates and integral inequalities, we derive bounds that
prevent finite-time blow-up and guarantee that solutions persist for all time. The key argument relies
on controlling the nonlinear boundary terms and proving that the energy functional remains bounded
over time. These results complement the local existence theory and provide insights into the long-
term behavior of solutions.

Igbal M. Batiha (Global Existence for Heat Equation with Nonlinear and Damping Piecewise Neumann Boundary
Condition)



856 International Journal of Robotics and Control Systems
Vol. 5, No. 2, 2025, pp. 846-861

ISSN 2775-2658

Theorem 3.4 If 2 < p < m and p < r, then any weak solution obtained in Theorem 1 can be

extended globally to (0, 00) x .

Proof 6 We start by using the following energy identity:

ol 5 gVl el = g g [
Rearranging, we obtain
a7 (1908 = 2 IulEt) = el — e, <.
Now, we introduce the auxiliary functional
B = 51Vulf + — Il

Differentiating F'(t), we obtain

d (1 1 L2 )
B(t)=1 (2||Vu||%—|| 24+ Hnunzil)

d (1 2 p+1 pt1
= & (31Vul = ) + 2 Gl
— w3 - uutuqm 2 /F WPy da

1

+ 2 gt

_” thF1 || Hp+1 It 7/ u p+1,I';

+1
<7(1+ Huuzﬂ,n) -

If p = q + 1, we obtain
E'(t) < Z(1+ E(1)).

Integrating over (0, t), we get
T
BE(t) < 7 / E(t)dt + ZT + E(0).
0

Applying Gronwall’s lemma yields
E(t) < (ZT + E(0)) exp(ZT).

Thus, we conclude that
[Vaull2,  |lullps1,r, € L%(0, Tinax)-

Moreover,

t
JACCE —nunzﬂ b 3 IVuO)l

1
p+1 2
p +1 || ”Loo (0,Tmax; LPT1(I'1)) - §HV90H2

(16)

A7
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857

Now, using the integral representation

t 2
m@=%m+/wm
0 2

<wam+lﬁmh>

T
gmw@m3+A e 2

2

1 1
2 p+1 - 2
< 2H§O($)”2 + p+1 ”uHLOO(O,TmaX;LPH(Fl)) 2 HVQOHZ

This leads to a contradiction, which proves the result.

r

Theorem 3.5 Suppose that m > 1,2 < p < r, and m > pe

positive. If the initial data satisfies ug € W, where

W = {u € C([0,00); H'(Q)),us € L™((0,00) x I'1) N L*((0,00) x )},

and that the measure of T'j is

then there exists a global solution u of the problem on (0, 00) x €, such that w € W for all t > 0.

Furthermore, the energy identity holds for all s,t € (0, c0)

p+1
[ vl g 19zl [z, =3 [

Proof 7 We first introduce an alternative and more explicit definition of
K(u) =
Which characterizes the set
W={peH(Q): K(p)>0,J(p) <d}.
Where
d= inf sup E(pu).

uEH1 (Q) u>0
& lr, #0

Since F is decreasing, we have

1 1 +1
E(t) = 5W“H§ - 7\\“”&1 Iy

1 1
E(t) > §HVUII§ IIV ||p+
1 1
E(t) + |lullf g = 5”“”%11(9) - ﬁ”u“%l(g)'
Where Jull
U
B = sup <H1> .
u€H1 Q) [ullp+1,m,
5o lp, #0
Define the function
Ll gy — —ul g

Jlullgr) = §HU”H1 ]
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Then, we obtain the bound

Moreover, since
we obtain

Since E(t) < E(0), we deduce
E(0) + llellfn) < d+ B.

Additionally, we have
ilullgrey) < E@®) + lull3pn g < d+ B.

Since t — [|ul| g1 () is continuous, we conclude that
||u||H1(Q) <B, Vte (O7Tmax)‘
Finally, using the embedding H!(§2) < LPT!(T), we establish

||u||p+1,F1 € LOO(Oa TmaX)7

Which concludes the proof.

4. Conclusion and Future Works

In this work, we investigated a modified heat equation with nonlinear damping Neumann bound-
ary conditions, motivated by the heat transfer dynamics in the Columbia disaster. We established the
local and global existence of solutions using energy estimates and compactness arguments, supported
by numerical simulations. Future research can explore blow-up phenomena, optimal control strate-
gies, stochastic effects, and advanced numerical methods to enhance model accuracy and applicability
in real-world aerospace and thermal engineering problems.
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