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1. Introduction 

Over the past several years, there has been a significant increase in interest in mobile robots, 

leading to the development of numerous applications such as assistive robots [1]-[3], search and rescue 

operations [4], [5], and power line inspections [6], [7]. By enhancing robot functionality and 

performance, researchers tried to replace human effort in dangerous places with mobile robots [8], 

[9]. Achieving accurate motion control for different kinds of mobile robots on a variety of smooth and 

rough surfaces in unconventional environments is one of the main problems in this respect, and it has 

drawn interest from academics all over the world [10]-[13]. In other words, one of the major 

challenges that designers should take care of is precise trajectory tracking. Offline trajectory planning 

followed by control system-based trajectory tracking is a common two-layer method for applications 

in known environments [14]-[16]. However, computationally intensive planning techniques, and the 
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 This paper presents the design of a Nonlinear Model Predictive Controller 

(NMPC) for a wheeled Omnidirectional Mobile Robot (OMR) in order to 

track a desired trajectory in the presence of previously unknown static and 

dynamic obstacles in the environment around the robot. A laser rangefinder 

sensor is used to detect the obstacles where each obstacle occupies 

numerous points of every sensor reading. The points that belong to each 

obstacle are then clustered together using the Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) algorithm. This research 

introduces a novel approach to represent obstacles as multiple rotated 

ellipses, enabling a more accurate representation of complex obstacle 

shapes without overestimating their boundaries, thereby allowing the robot 

to navigate through narrow passages. CoppeliaSim robotic simulator is 

utilized to create the virtual simulation environment as well as simulate the 

OMR dynamics. MATLAB with the help of the CasADi toolbox is used 

for the process of the laser rangefinder readings and the implementation of 

NMPC, respectively.  To validate the effectiveness and robustness of the 

proposed approach, three simulation scenarios are conducted, each 

involving distinct trajectories and varying densities of static and/or 

dynamic obstacles. The proposed control architecture exhibits remarkable 

performance, enabling the OMR to effectively navigate through narrow 

passages and avoid multiple static and dynamic obstacles while closely 

adhering to the desired trajectory. 
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requirement to repeatedly recalculate trajectories in changing environments, make the two-layer 

strategy inappropriate in unknown environments [17]-[19].  

Model Predictive Control (MPC) is an alternative approach that combines optimum control and 

optimal trajectory planning into a single optimization problem [20]. By minimizing a performance 

index and taking into account constraints such as system dynamics and admissible states, control 

inputs, and obstacles, MPC determines the best control signals and trajectories [21]. MPC has been 

extensively utilized for trajectory planning and control in a variety of applications in recent years, 

including industrial automation, aerospace, and automotive engineering [22]. The predictive controller 

is very adaptable because of its capacity to predict and adjust to changes [23]. 

A unified MPC-based method, for instance, was presented in [24] for trajectory planning and 

control, guaranteeing feasibility within traffic limits, both static and dynamic situations constraints. In 

[25], a realistic and unified trajectory planning and control approach was provided by proposing a 

formulation for the Dynamic Driving Task (DDT) and an MPC-based solution. An online nonlinear 

MPC technique for steering multiple autonomous nonholonomic Wheeled Mobile Robots (WMRs) 

without collisions or deadlocks was reported in [25]. However, terminal constraints and costs were 

left out of the formulation in order to reduce the computing complexity of the optimization issue. 

Furthermore, [26] designed a nonlinear MPC (NMPC) technique to stabilize the robot in desired 

positions and orientations while investigating the motion control of a four-wheeled OMR in dynamic 

environments. In this work, trajectory planning and control for three-wheeled OMR, are implemented 

with a single layer NMPC. 

A critical aspect of robot control is the ability to maintain trajectory tracking in the presence of 

obstacles. With the use of path-planning techniques, researchers have managed a mobile robot in the 

face of obstacles [27], [28]. However, if the path planning approach has a large computing burden, 

utilizing two control loops (control and path planning) may result in a delayed response to obstacles. 

Numerous path-planning techniques have been suggested to deal with this problem [29]. Nevertheless, 

the process of generating a new path can be computationally expensive, and the challenge of avoiding 

collisions with obstacles remains an active area of research [30]-[33].  

The robot needs to be steered quickly in order to avoid collisions with obstacles and maintain its 

proximity to the reference trajectory. This means that when the robot detects a possible obstacle, it 

must rapidly deviate from the primary track and then quickly return to the trajectory after overcoming 

the obstacle. The efficiency and speed of the MPC for directing mobile robots without the requirement 

for complicated path planning computations or algorithms were examined in [34]-[36]. The controllers 

demonstrated remarkable precision and efficiency in mimicking overtaking behavior.  

Collision-free areas (CFA) can be included in the MPC optimum control problem (OCP) in a 

variety of ways. The way the CFAs are specified affects the representations' accuracy, complexity, 

and constraints  [37], [38]. More exact descriptions impact computing efficiency by adding complexity 

and constraints; therefore, there is usually a trade-off between accuracy and efficiency. More 

straightforward descriptions may be sufficient in sparse surroundings, but they become insufficient in 

cluttered environments because passageways might be clogged, making optimization impossible as a 

result of oversimplification [39]. This research proposes a comprehensive NMPC framework that 

integrates obstacle avoidance as constraints, enabling simultaneous trajectory planning and obstacle 

avoidance for both static and dynamic obstacles. 

In the literature, there are several methods for object detection using the LiDAR sensor [40]-[43]. 

The best methods make use of point cloud data.  A technique is created by [44] for point cloud data 

based on dynamic environment perception. Reliable dynamic obstacle avoidance is accomplished 

using this approach by enclosing the dynamic obstacles with a minimal bounding single shape such 

as an ellipse or circle for each obstacle. However, in crowded environments, single ellipsoids or other 

forms may overlap with one another when there is a small space between two or more obstacles. This 

can make it difficult for the robot to navigate between these obstacles, particularly when the path is 

narrow. This may lead to the loss of recursive feasibility, or the capacity to avoid obstacles that need 

a substantial departure from the initial path. Although significant progress has been made in trajectory 
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tracking and obstacle avoidance, existing approaches often face limitations when dealing with 

complex environments characterized by intricate obstacle geometries and dynamic obstacles. This 

research aims to address these challenges by proposing a single-layer NMPC algorithm specifically 

designed for OMRs. 

In this paper, a single-layer NMPC algorithm incorporating obstacle avoidance features for 

trajectory tracking of OMR is proposed. After gathering data from the laser rangefinder, the DBSCAN 

algorithm is used to cluster the obstacles. Both static and dynamic obstacles in a constrained 

environment can be managed in this work. In this study, the environmental obstacles are modeled as 

multiple ellipses, well suited in scenarios including complex-shaped obstacles. The proposed 

framework's performance is evaluated through simulations conducted using the CoppeliaSim robot 

simulator together with MATLAB R2023a. This simulation makes use of the Statistics and Machine 

Learning Toolbox, and the CasADi Toolbox [45] with the Interior Point OPTimizer (IPOPT) solver 

[46]. The key contributions of this study can be summarized as follows: 

• Each obstacle is represented by multiple ellipses rather than a single ellipse or circle. This 

approach allows for a more accurate estimation of obstacles, even when their surfaces are 

complex, avoiding the overestimation that can occur with the single ellipse or circle method. 

• Obstacles are detected in real-time using a laser rangefinder, as opposed to relying on obstacles 

with predefined positions and shapes. The proposed obstacle avoidance method is capable of 

handling both static and dynamic obstacles. 

• The NMPC formulation integrates obstacle avoidance as constraints, enabling a unified approach 

for both trajectory tracking and obstacle avoidance. This integrated approach, validated through 

real-time experiments in CoppeliaSim and MATLAB, demonstrates the effectiveness of the 

proposed method. 

The remainder of this paper is organized as follows: Section 2 provides a description of the 

OMR's kinematic model. Section 3 presents the NMPC framework; Section 4 presents simulation 

results to strengthen the recommended control strategy; and Section 5 concludes the study. 

2. OMR Kinematic Model 

To analyze the kinematics of an OMR shown in Fig. 1, it is advantageous to employ two reference 

frames: a stationary inertial (global) frame (𝐼) and a moving frame (𝑅) attached to the robot's center 

of rotation. By combining the robot's orientation, 𝜃𝐼, relative to the inertial frame with its position 

coordinates, 𝑥𝐼 and 𝑦𝐼, a set of generalized coordinates can be established to describe the robot's 

configuration within the workspace. The robot's motion is controlled through the application of 

translational velocities (𝑢, 𝑣), and angular velocity, 𝜔. Consequently, the state vector and the input 

vector can be defined as 𝐱 =  [𝑥𝐼 𝑦𝐼 𝜃𝐼]𝑇 ∈ ℝ3 and 𝐮 =  [𝑢 𝑣 𝜔]𝑇 ∈ ℝ3, respectively. The 

kinematic model of the OMR is presented as follows [47], [48]: 

 

ẋ(𝑡) = f(x(𝑡), u(𝑡)), x(0) = x0, 

[

𝑥̇𝐼

𝑦̇𝐼

𝜃̇𝐼

] = [
cos 𝜃𝐼 −sin 𝜃𝐼 0
sin 𝜃𝐼     cos 𝜃𝐼 0

0 0 1

] [
𝑢
𝑣
𝜔

] 
(1) 

The distance from the OMR's center of mass to each wheel is denoted by 𝐿. The Omni-wheels 

are not steerable and positioned at angular offsets of π/3, π, and -π/3 rad relative to the robot's 

coordinate system. Incorporating the wheel velocities, the lower-level kinematic model relative to the 

OMR's coordinate frame is formulated as follows: 

 [

𝑞̇1

𝑞̇2

𝑞̇3

] =
1

𝑟
[

   √3 2⁄ −1 2⁄ 𝐿
0 1 𝐿

−√3 2⁄ −1 2⁄ 𝐿

] [
𝑢
𝑣
𝜔

] (2) 
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where the radius of each robot wheel is indicated by 𝑟 , and the vector of wheel angular velocities is 

defined as 𝐪̇ =  [𝑞̇1 𝑞̇2 𝑞̇3]𝑇 ∈  ℝ3. The OMR features three identical wheels, each equipped with 

an electric motor and positioned equidistantly at a distance 𝐿 from the OMR's center of mass. The 

maximum achievable wheel velocity is determined by the electric motor's specifications. The wheel 

velocities are subject to the constraint 𝑞̇
𝑚𝑎𝑥

, such that ∀𝑖 ∶ 𝑞̇
𝑖

≤  𝑞̇
𝑚𝑎𝑥

, where the subscript (𝑖 = 1, 2, 

3) denotes the wheel index. This constraint arises from the limitations imposed by the coil resistance 

and counter electromotive force on the motor's current and voltage. 

 

Fig. 1. OMR kinematics diagram 

The desired translational velocity of the OMR in the trajectory tracking problem is not a freely 

selectable parameter but is instead dictated by the time-parameterized reference trajectory. 

Consequently, the trajectory tracking task necessitates the OMR to accurately follow the desired 

position and velocity profiles distinct for individually given time instant. Analogous to the OMR 

model (1), a reference trajectory for OMR can be formulated as follows:  

 𝐱̇𝑟 = [

𝑥̇𝑟

𝑦̇𝑟

𝜃̇𝑟

] = [
cos 𝜃𝑟 −sin 𝜃𝑟 0
sin 𝜃𝑟     cos 𝜃𝑟 0

0 0 1
] [

𝑢𝑟

𝑣𝑟

𝜔𝑟

] (3) 

In the reference trajectory problem, the reference state 𝐱𝑟 =  [𝑥𝑟 𝑦𝑟 𝜃𝑟]𝑇 ∈  ℝ3, and the 

associated reference input velocities 𝐮𝑟 =  [𝑢𝑟 𝑣𝑟 𝜔𝑟]𝑇 ∈  ℝ3 are functions of time 𝑡. In order to 

regulate (1) and monitor (3), an error state 𝐱𝑒 can be characterized by the following: 

 𝐱𝑒 = [

𝑥𝑒

𝑦𝑒

𝜃𝑒

] = [

𝑥𝑟 − 𝑥𝐼

𝑦𝑟 − 𝑦𝐼

𝜃𝑟 − 𝜃𝐼

] (4) 

A control problem can be formulated based on the tracking task by considering the error state 

and its associated dynamics. By appropriately selecting the error state in a rotated reference frame (4), 

the model can be simplified. The derivation of the error state model is as follows: 

 𝐱̇𝑒 = [

𝑥̇𝑒

𝑦̇𝑒

𝜃̇𝑒

] = [
cos 𝜃𝑟 ⋅ 𝑢𝑟 − sin 𝜃𝑟 ⋅ 𝑣𝑟 − cos 𝜃𝐼 ⋅ 𝑢 + sin 𝜃𝐼 ⋅ 𝑣
sin 𝜃𝑟 ⋅ 𝑢𝑟 + cos 𝜃𝑟 ⋅ 𝑣𝑟 − sin 𝜃𝐼 ⋅ 𝑢 − cos 𝜃𝐼 ⋅ 𝑣

𝜔𝑟 − 𝜔
] (5) 
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Considering the error model (5), the trajectory tracking objective is to select appropriate robot 

inputs such that the tracking error 𝐱𝑒  converges to zero. In addition, the control algorithm must ensure 

safe navigation with the environment. In other words, the controller must consider the map boundaries, 

previously unknown obstacles, and the OMR's geometry. Furthermore, the saturation limits of the 

OMR's inputs must be carefully addressed during the controller design process. The NMPC 

architecture presented in the subsequent section effectively tackles these challenges. 

3. Proposed Controller  

3.1. NMPC Theory for Trajectory Tracking 

Nonlinear Model Predictive Control (NMPC) has been employed as a promising optimal control 

strategy for control challenges due to its ability to effectively manage system constraints and 

incorporate future knowledge into the controller design [49]. For a typical nonlinear system, 

represented by the following differential equation: 

 𝐱̇𝑒(𝑡) = 𝐟(𝐱𝑒(𝑡), 𝐮𝑒(𝑡)),  subject to 𝐮𝑒(𝑡) ∈ 𝑈, 𝐱𝑒(𝑡) ∈ 𝑋, ∀𝑡 ≥ 0, (6) 

The sets 𝑋 and 𝑈 represent the feasible states and inputs, respectively. The error state vector 

𝐱𝑒(𝑡) and the error input vector 𝐮𝑒(𝑡) are subsets of ℝ3. The objective of tracking control is to devise 

an appropriate control strategy that will steer the system (6) toward its steady-state equilibrium point 

(𝐱𝑒(𝑡) = 𝐱𝑟(𝑡) −  𝐱(𝑡) = 0 and 𝐮𝑒(𝑡) = 𝐮𝑟(𝑡)  −  𝐮(𝑡) = 0). The core principle of NMPC entails 

the following sequential steps:  

• Predict the system's evolution over a specified time horizon.  

• The optimal input at each time step 𝑡, denoted by 𝐮̅𝑒(⋅), is determined by the prediction horizon 

𝑇𝑝. The objective is to minimize the value of the given objective function within the time interval 

[𝑡, 𝑡 + 𝑇𝑝] → 𝑈. The bar represents future values that are anticipated but differ from actual 

values. 

 

min
𝐮𝑒

  𝐽(𝑡, 𝐱𝑒(𝑡), 𝐮𝑒(𝑡)) 

Subject to: 𝐱̇𝑒 (𝜏) = 𝑓(𝐱𝑒(𝜏), 𝐮𝑒(𝜏)) 

𝐱𝑒(𝜏) ∈ 𝑋,   ( 𝜏 ∈ [ 𝑡, 𝑡 + 𝑇𝑝]) 

𝐮𝑒(𝜏) ∈ 𝑈,   ( 𝜏 ∈ [ 𝑡 + 𝑇𝑐 , 𝑡 + 𝑇𝑝]) 

(7) 

here 𝑇𝑐 represents the control horizon, with 𝑇𝑐 ≤  𝑇𝑝. 

• Postulate that the current input is equal to the initial optimal input value, 𝐮̅𝑒(𝑡). 

To ensure that the tracking errors converge to zero, the following cost function is minimized over 

a finite time interval [𝑡, 𝑡 + 𝑇𝑝]: 

 𝐽(𝑡, 𝐱𝑒(𝑡), 𝐮𝑒(𝑡)) =  ∫ (𝐱𝑒
𝑇(𝜏)𝐐𝐱𝑒(𝜏) + 𝐮𝑒

𝑇(𝜏)𝐑𝐮𝑒(𝜏))𝑑𝜏
𝑡+𝑇𝑝

𝑡

 (8) 

where 𝐑 and 𝐐 denote positive definite symmetric weight matrices. Physical limits imposed as control 

and system states constraints are often necessary for a realistic system to function. Admissible states 

and control set as established by the next sets of limitations. The OMR input saturation limits and the 

box constraint for the map bounds are supplied by equation (9). 

The OMR input saturation limit is represented by (𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥), (𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥) for translational 

velocities, and (𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥) for rotational velocities. The sets (𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) in the 𝑥-axis and (𝑦𝑚𝑖𝑛, 

𝑦𝑚𝑎𝑥) in the 𝑦 -axis represents the map borders. 
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𝑥𝑚𝑖𝑛  ≤  𝑥𝐼  ≤  𝑥𝑚𝑎𝑥

𝑦𝑚𝑖𝑛  ≤  𝑦𝐼  ≤  𝑦𝑚𝑎𝑥

𝑢𝑚𝑖𝑛  ≤  𝑢 ≤  𝑢𝑚𝑎𝑥

𝑣𝑚𝑖𝑛  ≤  𝑣 ≤  𝑣𝑚𝑎𝑥

𝜔𝑚𝑖𝑛  ≤  𝜔 ≤  𝜔𝑚𝑎𝑥

 (9) 

Studies have indicated that the implementation of terminal equality constraints can ensure the 

stability of NMPC [50], [51]. As detailed in [52], the stability can be established by satisfying the 

following two fundamental assumptions (a and b): 

a. A reference state vector, denoted as 𝐱𝑟, exists within the state space set 𝑋 of the error state vector 

𝐱𝑒 ∈ ℝ3. This 𝐱𝑟 represents the desired equilibrium point for the system. To attain this 

equilibrium, a suitable control input, 𝐮𝑟, must be selected from the admissible control set 𝑈. 

b. After running the cost function, 𝐽: 𝑋 × 𝑈 → ℝ0
+, there is an action 𝐮𝑟 within a feasible control 

set 𝑈 that minimizes the cost function, resulting in 𝐟(𝐱𝑟, 𝐮𝑟) equaling zero. 

Under Assumption I, the validity of this assumption can be assessed by examining system (5). 

Given the quadratic nature of the cost function 𝐽 as defined in equation (8), the second assumption (II) 

is likewise satisfied. Given that the data for results has been obtained from equation (8) and the desired 

controller exhibits stability, stability is guaranteed. 

3.2. Obstacle Avoidance Algorithm 

In order to prevent accidents, path-planning algorithms are frequently utilized without the 

assistance of controllers. However, this strategy could result in lower reaction times and higher 

computing expenses, which raises the possibility of accidents. The obstacle avoidance constraints can 

be used for the reference robot in the model predictive controller to solve this problem. By doing this, 

predictability can be utilized to make sure the robot stays on the correct trajectory and doesn't run into 

any obstacles. A reference robot with obstacle avoidance constraints is implemented in order to 

overcome this issue. In this sense, predictability combined with model predictive control can help 

robots navigate obstacles safely. 

As one of the control performance measures, this work utilizes the obstacle avoidance method as 

a constraint in the cost function. The laser rangefinder sensor and DBSCAN algorithm are used to 

characterize the obstacles as elliptical shapes at execution time, which makes it appropriate for narrow 

passageways. Each obstacle which consists of many points (𝑛𝑝) is divided into (𝑚) groups where each 

group contains (𝑘) points. Each group is represented by a rotated ellipse with the following ellipse 

variables: (𝑥𝑜𝑏𝑠𝑖𝑗, 𝑦𝑜𝑏𝑠𝑖𝑗) are the coordinates of each ellipse center, where 𝑥𝑜𝑏𝑠𝑖𝑗 =

𝑚𝑒𝑎𝑛(𝑥𝑖𝑗1, 𝑥𝑖𝑗2, … 𝑥𝑖𝑗𝑘), 𝑦𝑜𝑏𝑠𝑖𝑗 = 𝑚𝑒𝑎𝑛(𝑦𝑖𝑗1, 𝑦𝑖𝑗2, … 𝑦𝑖𝑗𝑘), 𝑖 =  1, 2, … 𝑛, 𝑛, is the number of 

obstacles, 𝑗 =  1, 2, … 𝑚, 𝑚,  denotes the number of ellipses for each obstacle; the semi-major axis 

𝑎𝑖𝑗 = √((𝑥𝑖𝑗1 − 𝑥𝑖𝑗𝑘)
2

+  (𝑦𝑖𝑗1 − 𝑦𝑖𝑗𝑘)
2
; the semi-minor axis 𝑏𝑖𝑗 = 0.01 (a small number because 

the sensor only detects the obstacle surface); and the rotation of the ellipse is denoted by an angle 

𝜓𝑖𝑗 = 𝑎𝑡𝑎𝑛2(𝑦𝑖𝑗1 − 𝑦𝑖𝑗𝑘 , 𝑥𝑖𝑗1 − 𝑥𝑖𝑗𝑘). Fig. 2 demonstrates how each obstacle in the robot's 

environment is enveloped by multiple ellipses.  

Given the assumption of prior obstacle ignorance by the controller, a detection mechanism has 

been devised to identify obstacles within a radius of (𝑀) meters. This detection is based on the system's 

global position and the available environmental map. As a consequence, obstacle avoidance can only 

be implemented for objects situated within the sensor's detection range.  

The robot radius, the distance between the obstacles and the robot, and other environmental 

parameters must all be taken into account in order to assist the OMR's safe navigation over the map 

while avoiding obstacles. In order to avoid both dynamic and static obstacles, the following 

environmental constraint is taken into consideration: 
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 ∀𝑖, 𝑗 ∶
((𝑥 − 𝑥𝑜𝑏𝑠𝑖𝑗)cos(𝜓𝑖𝑗) + (𝑦 − 𝑦𝑜𝑏𝑠𝑖𝑗)sin(𝜓𝑖𝑗))

2

(𝑎𝑖𝑗 + 𝑅𝑏 +  𝛽)2
+

((𝑥 − 𝑥𝑜𝑏𝑠𝑖𝑗)sin(𝜓𝑖𝑗) − (𝑦 − 𝑦𝑜𝑏𝑠𝑖𝑗)cos(𝜓𝑖𝑗))
2

(𝑏𝑖𝑗 + 𝑅𝑏 +  𝛽)2
≥ 1 (10) 

where 𝑅𝑏 is the OMR's radius, and 𝛽 is the safety margin that can be provided to improve the motion 

OMR's safe navigation while it is inside a non-obstructed area where a larger 𝛽 indicates safer 

navigation since it overcomes the distance reading error. However, excessively large values of 𝛽 can 

hinder the robot's ability to navigate through narrow passages due to the creation of unnecessarily 

large safety margin. 

 

Fig. 2. Obstacle detection and enclosing by multiple ellipses 

4. Results and Discussion 

The OMR dynamics are simulated using CoppeliaSim simulator, a highly capable robotic 

simulation tool that facilitates the simulation of both rigid and soft body dynamics. One of the key 

strengths of CoppeliaSim is its compatibility with various programming languages, including 

MATLAB, C++, and Python. Moreover, it includes a wide range of built-in tools that greatly 

enhance and speed up the robot simulation process. It also allows for real-time interaction 

with the virtual environment. 

In each simulation scenario, OMR is presumed to have knowledge of its pose (𝑥𝐼 , 𝑦𝐼 , 𝜃𝐼) in 

each simulation step. It is equipped with a laser rangefinder capable of detecting obstacles within a 3-

meter radius and a 360° field of view, with a measurement accuracy of ±2 centimeters. Data 

transmission between MATLAB and CoppeliaSim is performed using ZeroMQ remote APIs. 

MATLAB is chosen since it facilitates the laser range finder data processing and the solution of the 

optimal control problem. MATLAB uses the DBSCAN algorithm to convert the laser rangefinder raw 

data into clusters where each cluster belongs to an obstacle in the environment around the robot. 

DBSCAN algorithm takes two inputs beside the data to cluster which are the minimum number of 

neighbor points required to form a cluster (minpts) and the minimum distance between two points to 
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be considered in the same cluster (epsilon). CasADi toolbox in MATLAB is utilized for solving the 

optimal control problem and system states integration. This is accomplished using multiple shooting 

method and IPOPT solver. The IPOPT acceptable convergence tolerance is set to 10−8 and the 

maximum number of iterations is selected to be 2000. For system states integration, the Runge-Kutta 

4th (RK4) order method is used. 

In each simulation scenario, the reference angle 𝜃𝑟 is kept to zero and the DBSCAN parameters 

are chosen as 5 and 0.1 for minpts and epsilon, respectively. This implies that obstacles represented 

by fewer than five points are either too distant from the robot or are likely noise artifacts. Additionally, 

if the distance between two consecutive points exceeds 0.1 meters, they are considered to belong to 

separate obstacles, which aligns with reasonable assumptions. The controller saturation limits and 

map margins are chosen as follows 

−0.5 ≤ 𝑣𝑥 ≤ 0.5 (𝑚/𝑠𝑒𝑐)
−0.5 ≤ 𝑣𝑦 ≤ 0.5 (𝑚/𝑠𝑒𝑐)

−𝜋/4 ≤ 𝜔 ≤ 𝜋/4 (𝑟𝑎𝑑/𝑠𝑒𝑐)
−2.5 ≤ 𝑥 ≤ 2.5 (𝑚)
−2.5 ≤ 𝑦 ≤ 2.5 (𝑚)

 

The radii of the robot wheels in (2) and the robot diameter are designed to be 𝑟 = 3.5 𝑚𝑚 and  

𝑅𝑏 = 10 cm. The safety margin is selected as 𝛽 = 10 cm. The NMPC parameters are chosen as 

follows: the total number of horizon steps is set to N = 5 steps and the time step is selected as ∆𝑇 =
 0.05 sec, yielding a prediction horizon length of 𝑇𝑝  = 0.25. The weight matrices in (8) are selected 

as 𝑄 = 𝑑𝑖𝑎𝑔(10, 10, 10), 𝑅 = 𝑑𝑖𝑎𝑔(0.1, 0.1, 0.1). These parameters and weights are empirically 

determined to optimize trajectory tracking and obstacle avoidance performance. A potential avenue 

for future research involves the utilization of optimization algorithms to systematically determine 

these weights. 

The first scenario is presented in Fig. 3 and Fig. 4 in which the OMR follows a figure-8 desired 

trajectory described by the following. 

 
𝑥𝑟 = cos(𝑤𝑡) 

𝑦𝑟 = 0.5 sin(2𝑤𝑡) 
(11) 

 

Fig. 3.  The OMR follows a figure-8 trajectory  

where 𝑤 = 0.628, selected such that the trajectory takes about 10 sec when starting at point B and 

returning to the same point. The OMR faces no obstacle while following the figure-8 trajectory. It 

starts at point A and then tracks the desired trajectory with a very small tracking error (see Fig. 4) to 
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reach point B. In both Fig. 3 and Fig. 4, the desired trajectory is represented by the green curve while 

the OMR actual trajectory is represented by the red curve. Fig. 4 (right) shows the control action vector 

components 𝐮 = [𝑢 𝑣 𝜔] which exhibit smooth curves and no aggressive actions honoring the 

provided input saturation limits. While traditional performance metrics such as Integral Square Error 

(ISE) and Mean Square Error (MSE) are commonly used, they may not be entirely suitable in this 

context. Given the significant potential for deviations from the planned trajectory when encountering 

obstacles, these metrics might not accurately reflect the controller's performance. 

  

Fig. 4. The OMR follows a figure-8 trajectory (left); control action vector components (right)  

In the second scenario, shown in Fig. 5 and Fig. 6, the OMR follows a circular trajectory given 

by the following 

 
𝑥𝑟 = cos(𝑤𝑡) 

𝑦𝑟 = sin(𝑤𝑡) 
(12) 

 

Fig. 5. The OMR tracks a circular trajectory in the presence of static obstacles  

where 𝑤 = 0.628, selected such that the trajectory takes about 10 sec when starting at point B and 

returning to the same point.  The OMR starts at point A and moves to follow the desired trajectory 
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(green curve in Fig. 5 and Fig. 6 while the red curve represents the actual robot trajectory). It faces a 

static obstacle at point B, moves around the obstacle, and returns to the desired trajectory at point C 

until it encounters another obstacle at point D, overcomes it, and follows back the desired trajectory 

at point E to reach point F. The control vector 𝐮 = [𝑢 𝑣 𝜔] applied to OMR is shown in Fig. 6 

(right) which shows aggressive control action only when facing obstacles. 

  

Fig. 6. The OMR follows a circular trajectory (left); control action vector components (right) 

The third scenario is more realistic and challenging in which the environment is cluttered with 

static and dynamic obstacles as shown in Fig. 7 and Fig. 8. This scenario occurs when the OMR is 

required to move from point A to point K and it has a map of the environment. However, the map may 

change if the position of static obstacles is altered or by adding new static obstacles to the environment. 

Additionally, the map may change if there are moving obstacles in the environment such as 

pedestrians. The environment map the robot possesses does not include the extra two static and two 

dynamic obstacles (red and blue obstacles in Fig. 7, respectively.) To move from point A to point K, 

the robot should first plan a path using the environment map it owns and then it should avoid any 

additional unmapped obstacles in its path. The path is generated using the Open Motion Planning 

Library (OMPL). There is a built-in  plugin in coppeliaSim that wraps the OMPL and it can be used 

directly inside the coppeliSim. Bidirectional Transition-based Rapidly-exploring Random Tree 

(BiTRRT) algorithm, available in OMPL, is utilized to plan the path from point A to point K. The 

generated path does not take into account the red and blue obstacles. The generated path is converted 

to a trajectory such that it takes about 39 sec to move from point A to point K and provided to the 

proposed NMPC tracking controller and collision avoidance scheme. 

It can be observed that when the robot moves from point A to point B (see Fig. 8), it adheres 

precisely to the desired trajectory (the obstacle avoidance algorithm is not triggered). At point B, the 

robot is about to enter the opening of 0.5 m in the wall and the wall is about to enter the safety margin 

𝛽 which triggers the obstacle avoidance algorithm. This causes a small oscillation in the OMR 

trajectory. The same happens at point C. At point D, the OMR encounters the unmapped static 

obstacle (the red one). It successfully bypasses it and returns to the desired trajectory at point E. At 

point F, the  OMR faces the first moving obstacle (with a speed of 0.25 m/s) which moves back and 

forth in a straight line between positions 1 and 2 (see Fig. 7.) The robot initially halts and oscillates 

in its current position, unable to find a feasible solution to follow the desired trajectory. Once the 

obstacle reaches position 2, the OMR moves towards point K. However, the moving obstacle is now 

moving to position 1 and consequently, the OMR moves away from it causing it to deviate from the 

desired trajectory. Once the moving obstacle is away from OMR, it returns to the desired trajectory 

at point G, faces the second static unmapped obstacle, avoids it and reaches point H on the desired 

trajectory. At point I, the  OMR faces the second dynamic obstacle (with a speed of 0.32 m/s)  which 

moves back and forth in a circular motion along positions 3, 4 and 5 (the obstacle at position 5 is not 

shown to provide a clear view of the scene, see Fig. 7.) It moves away from the obstacle and heads 
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back to the trajectory as it is leading the desired trajectory this time. The OMR finally reaches the 

desired point K without collision. Fig 8 (right) presents the control vector 𝐮 = [𝑢 𝑣 𝜔]. It can be 

noticed that every time an obstacle is about to enter the safety margin 𝛽, the control vector 

components highly oscillate to ensure collision-free navigation. In this scenario, it is assumed that 

the moving obstacles speed is less than the robot speed for safe navigation. This represents a 

limitation of the proposed approach when dealing with dynamic obstacles. Another limitation is the 

increased computational burden associated with representing each obstacle using multiple ellipses. 

A potential solution involves the implementation of adaptive mechanisms to determine the optimal 

number of ellipses for each obstacle. 

 

Fig. 7. The OMR follows the desired trajectory in a cluttered environment 

  

Fig. 8. The OMR follows the desired trajectory (left); control action vector components (right)  

5. Conclusion 

In this paper, a nonlinear model predictive controller was designed, enabling OMR to track a 

desired trajectory while at the same time avoiding both static and dynamic obstacles. The detection of 

obstacles was performed in real-time using a laser rangefinder, without former knowledge of 
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obstacles’ positions and shapes. The DBSCAN algorithm was used to cluster the laser rangefinder 

data where each cluster represents an obstacle in the environment. Each cluster was then enclosed by 

multiple rotated ellipses to represent complex-shaped obstacles and seamlessly be integrated with 

NMPC as inequality constraints. The performance of the proposed framework was evaluated by three 

scenarios using CoppeliaSim robotic simulator, MATLAB, and CasADi toolbox, showing its 

effectiveness in cluttered environments. One potential direction for future work is the implementation 

of the proposed control architecture on a real OMR. 
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