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Mechanical systems with high dynamic complexity often face challenges
due to unmodeled uncertainties and external perturbations, making effec-
tive control difficult. Therefore, new advanced, robust, intelligent control
theories have been developed through the sudden advance of computational
power in recent years. In this research work, these new theories of auto-
matic control are used, mainly based on what is currently called Artificial
Intelligence (Al) algorithms, to develop a novel altitude controller based
on the theory of Genetic Algorithms (GA) and Artificial Neural Networks
(ANN). The performance of the designed controller is evaluated by employ-
ing the numerical simulation model in MATLAB & SIMULINK, which
was created for the commercial MAV Mambo Parrot. The developed in-
telligent ANN-GA controller uses the Levenberg-Marquardt optimization
method and a Genetic Algorithm (GA) to improve Artificial Neural Net-
work performance. The initial PID gains are obtained according to the GA,
generating optimal values that initialize the neural network and contribute
to optimal performance of the ANN training through evaluation of (Mean
Square Error) MSE and (Integral Time Absolute Error) ITAE; the ANN
takes then, the adequate output and signals as data from input to calculate
the required combination of gains as output for MAV altitude controller.
Simulation results demonstrate that the self-tunable controller improves the
settling time, decreasing by 31.6% compared to the original PID controller.
The certainty of the implemented controller opens new routes for automatic
control strategies based on artificial intelligence algorithms for the complex
nonlinear dynamics of unmanned aircraft.

This is an open access article under the CC-BY-SA license.

1. Introduction

The discipline of control engineering has allowed the realization of various techniques that can

be applied to countless applications. Thanks to supervisory control systems, there is currently a set of
electronic devices capable of achieving effective and efficient behavior established by the designer;
these show that there has been a considerable advance in the control of cyber - physical systems [1].
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The control applications of Unmanned Aerial Vehicles (UAVs) generally require robust schemes ca-
pable of compensating disturbances, modeling errors, and measurement noise to achieve autonomous
navigation [2]. One promising approach to overcome such challenges is based on the use of Artificial
Intelligence (AI). Due to significant computational advances, working with UAVs has become an in-
ternational trend with many scientific developments. However, for the current state of the art of this
research article, it is decided to enumerate and identify specific helpful knowledge for the theoretical
foundation of the research, listing the most relevant ones.

This research proposes establishing a novel implementation of the classical PID control tech-
nique [3] employing artificial intelligence tools [4]. It is widely known in automatic control that a
Neural Network (NN) and Genetic Algorithm (GA) are methods for optimizing and learning [5] with
their respective weaknesses and strengths. Although both methods have evolved separately, the main
task of this research article is to propose a method for combining the two self-learning systems. A
cooperative approach has been developed between both techniques to find the optimal algorithm to
control the UAV’s altitude robustly. Uniting both intelligent techniques has only recently been in-
tended, and this research reports a successful case. The evaluation of the proposed algorithms for the
MAV is established in the numerical simulation software MATLAB & SIMULINK, more explicitly
using the available libraries: Simulink Support Package for Parrot Minidrones, which were developed
by the group Sertac Karaman from MIT in 2016 [6]. The simulator includes an atmospheric model
and a model of the multiple sensors integrated into the UAV (ultrasonic sensor, pressure sensor, cam-
era, and IMU). The sensor’s performance has excellent precision and fidelity. It is worth mentioning
that the simulator’s mathematical model presents certain advantages and disadvantages. Among the
advantages are flight dynamics and onboard sensors’ high fidelity. The main disadvantage is the re-
striction of being able to influence the redesign of its architecture freely, both modeling and physical
parameters, which makes the authors highlight the achieved task even more from the point of view of
this research article.

Remarkably, UAVs use the PID control technique to provide stabilization and reliable trajectory
tracking; nevertheless, it is needed to optimize the closed-loop dynamics response, for instance, by
decreasing the settling time. In the research article [7], a new intelligent controller is designed using
a neural network based on the Levenberg-Marquardt feedforward training method; the optimal con-
troller gains are generated by the PSO (Particle Swarm Optimization), and it is evaluated by the Mean
Square Error (MSE). The evaluation shows that the intelligent controller outperformed the manual
tuning PID controller. An essential task in aerial robotics is controlling the altitude. The article [8]
reports the design of an adaptive PID controller using Artificial Neural Networks. The proposed
controller is improved by a Genetic Algorithm illustrating the advantages of the adaptive neural PID
controller. The main advantage of this method is the adaptive capability to new conditions and varia-
tions in the system’s dynamics. In reference [9], a discrete-time PID controller is implemented over
a hexacopter. The PID is programmed for trajectory tracking tasks, an adaptive neural technique is
used to develop the controller and closed-loop stability is verified by the Lyapunov discrete theory.
A BP (Back-Propagation) network is used to adjust the PID gains. Experimental results demonstrate
a good performance of the proposed ANN-PID controller. An effective PID controller is applicable
when the center of gravity of the aerial vehicle does not match its geometric center. The use of a PID
algorithm and the GA and BP traditional systems is reported in [10].

The proposed algorithm can be optimized to adapt the controller to more complex UAV envi-
ronments and improve the control’s robustness; the algorithm can learn while it is being simulated.
In [11], to improve the PID controller of a quadrotor UAV, a neural network algorithm joining a
genetic algorithm is used to provide robustness and dynamic performance for a trajectory-tracking
controller. The overall convergence speed is improved, the attitude tracking controller is improved,
and the desired trajectory is faster achieved, eliminating the overshoot adverse effects; its overall per-
formance improves the classical PID. To solve the optimization problem for path planning of a UAV,
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the report in [12] uses a Genetic Algorithm (GA) as the optimization tool with an Artificial Neural
Network (ANN), which helps to converge faster to a given trajectory, the UAV can avoid obstacles
coming in its path. The Genetic Algorithms train the Neural Network. 3D simulations are presented
to verify the performance of the proposed approach. In the future, the transfer of information among
UAVs will be addressed. A new adaptive neural network control is proposed in [13]; the controller
aims to stabilize a quadrotor under the effect of modeling error and wind disturbances. Numerical
simulations verify that the new method outreaches the adaptive techniques known as dead zone and
e-modification; real-time prototype tests will be conducted soon.

UAV communications generally depend on wireless protocols, which are under substantial se-
curity threats; to solve this issue in correlation with the Principal Component Analysis (PCA), a new
technique based on an Artificial Neural Network (ANN) and Genetic Algorithm (GA) is proposed
in [14]. The algorithm generates the optimal weights for the communication network, and a compar-
ison between the proposed model and the BP network is made. This system detects an intruder in the
communications protocol system to prevent and respond to possible threats; training and validating
the system in real- time attacks makes the proposed algorithm very effective.

In this research article reported in [15], a self-tuning ANFIS (Adaptive Neural - Fuzzy Inference
System) controller working with a GA (Genetic Algorithm) is applied to solve the trajectory tracking
problem for UAVs. As the quadrotor dynamics is highly nonlinear, intelligent control is a valuable
tool for controlling this type of nonlinear system. The ANFIS is employed to reproduce the desired
trajectory. Meanwhile, the GA algorithm facilitates convergence to optimal parameters, reducing
learning errors and improving the controller’s robustness. The presented controller performs better
thanks to parameter updates than other UAV controllers. The instantaneous adjustment of aerial tra-
jectories is highly needed in military unmanned vehicles. The work in [16] proposes a path planning
model based on a Genetic Algorithm (GA) that builds a series of segments connected by circular arcs,
resulting in suitable paths for the UAV. The model developed is tested in more that eighteen realistic
scenarios on 3D terrains, and the proposed algorithm can find almost optimal solutions in flight plan-
ning every time. Reference [17] presents the design of a controller based on an evolutionary neural
network; the controller’s goal is to reach a specific position during flight. With the help of a single
multilayer Perceptron neural network, the controller was implemented; the network training was per-
formed using an evolutionary algorithm underlying the cost function definition. The designed neural
controller is tested in simulation.

In [18], a hybrid controller based on combining fuzzy and sliding mode techniques to stabilize
complex mechanical systems is reported. A Genetic Algorithm (GA) has been added to the controller
structure to optimize the control system requirements by exploiting the fuzzy approach. The sliding
modes controller assures the stability of the nonlinear system; besides guaranteeing the robustness of
the controller, the designed system also deals with the disturbances and uncertainties, thanks to the
use of the fuzzy approach.

The research report [19] establishes the design process of the conceptual design phase of an
airfoil for unmanned aerial vehicles. The wing parameters are determined through an aerodynamic
optimization process using both Genetic Algorithms (GA) and Artificial Neural Networks (ANNs);
the designed wing is tested in CFD (Computational Fluid Dynamics) simulations and wind tunnels.
Artificial intelligence optimization allows an exhaustive aeronautical comparison to determine the
best aerial configuration; since the numerical results are available at any time, it is easy to change
possible configurations; both artificial algorithms decrease the require computation time. Intelligent
artificial algorithms have proven to be an optimal solution to control unmanned aerial vehicles when
the computational power is limited. In [20], a learning control strategy based on a fuzzy neural
network is proposed with a conventional proportional controller and a sliding mode estimator to
update parameters that feed the learning algorithm. Simulation studies are carried out to validate
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the performance of the proposed controller; the Gaussian activation function for the Fuzzy Neural
Network (FNN), as well as Lyapunov-based stability analysis, supports the effectiveness of the control
algorithm.

In [21], a four-rotor UAV sensor fault diagnosis and fault-tolerant control based on genetic algo-
rithm, improved by a BP Neural Network algorithm is presented. The Mean Squared Error (MSE) is
proposed as a performance function and is used to quickly and accurately detect programmed faults.
Fault-tolerant control on the UAV is achieved by improving the classic GA-BP algorithm. The devel-
opment of a dual-net model ANN (Artificial Neural Network), i.e., capable of learning on and offline,
is the main task of the work reported in [22]. The multilayer Perceptron Network (MLP) identi-
fies the UAV’s system dynamics, while the robust model updates through the dual-net model switch.
Integrating the network and the Model Predictive Control (MPC) produces sufficient robustness to
obtain accuracy in predicting and controlling the system. In [23], two flight control methods are pro-
posed. One is a self-tuning PID controller based on Genetic Algorithms (GAs), and the other is an
Adaptive Neuro-fuzzy Inference (ANFIS) controller. In the central navigation system, neural-fuzzy
networks are designed to estimate heading angle, altitude, and speed. Durability and high robustness
are validated through numberless simulations. The controller can achieve the desired heading angle
in nominal conditions and under external wind disturbances.

An online learning adaptive neural network for small unmanned aerial vehicle is proposed in [24]
to improve the control performance during flight. The network generates the turn-around trajectory on
a radial basis using control methods that samples data and have training time. The neural network’s
performance relies highly on the type of data; the state error information generates the weight matrix
of the adaptive neural network and can be updated online using a Lyapunov function. Combining the
traditional feedback control method with the adaptive controller, the designed controller demonstrates
its effectiveness. Cooperative coverage for multi-UAV mission planning is the purpose of the research
article [25]. The problem is solved by involving a Neural Network and Genetic Algorithm. The
weights and thresholds of the network are optimized by using the Genetic Algorithm, which allows
to solve the optimal paths of the multi-UAV platoon. The UAV agents learn reconnaissance rules
not only independently but also autonomously. A convergence analysis proves the efficiency of the
method.

Stabilization of the altitude and the attitude of an unmanned vehicle around its hovering config-
uration is highly needed in aerial robotics. In reference [26], a method to optimize a regulation con-
troller is presented. Two control architectures, PD (Proportional-Derivative) and PID (Proportional-
Integral-Derivative), are tuned through the Linear Quadratic Regulator (LQR). A genetic algorithm
was implemented To optimize the inputs to the LQR and minimize the settling time in hovering
flights. Tests are conducted in presence of disturbances to validate the efficiency and effectiveness of
the proposed algorithm.

All of the cited research articles describe solutions in aerial robotics in all the dynamic systems
spectrum, e.g., modeling, identification, model-based controllers, unmodeled uncertainties compen-
sation and observer-based controllers. Nevertheless, only some integrate two artificial intelligence
algorithms to achieve a common objective. Hence, the main objective of this investigation is to
achieve cooperation between a Genetic Algorithm and an Artificial Neural Network to optimize the
performance of a PID-based altitude controller.

The main contributions of the research are:

e The design of a self-tuning intelligent altitude controller based on optimizing a feedforward
neural network using a genetic algorithm for the Mambo Parrot commercial unmanned aircraft.
e The data set used to train the artificial neural network consists of the best gains obtained from
the genetic algorithm implemented to generate a satisfactory performance by the quadcopter
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altitude controller.

e The MAV’s altitude is being adequately controlled considering its nonlinear mathematical
model, whose performance is very close to the real plant. It should be emphasized that this
model presents a great complexity due to its excellent design, which in turn leads to modi-
fication restrictions. Despite these disadvantages and constraints, the desired controller was
successfully implemented.

o The designed intelligent controller can be applied to multiple rotary-wing UAV configurations.

o The designed altitude controller would impact the UAV industry by incorporating the proposed
controller algorithm, which does not require specific knowledge of unmanned aerial vehicle
dynamics; it only requires reliable input-output data provided by onboard sensors. Inevitably
the arrangement of the data structure is still a major issue for feeding the architecture of the
network; hence, it should be noted that for such structure, the optimal design will only be
determined through the fly envelope of the required aircraft.

This research article is divided in to four main parts, starting with Section 1, which describes
the current state of the art and the main contributions of this investigation. Section 2 establishes in
detail the mathematical model of the Mambo Parrot dynamics, where the described model is based
on the Newton-Euler equations. Aside from the methodology used, a brief description of the training
methods of both intelligent algorithms is also included. The general basis of the PID controllers is
analyzed. The design of the Artificial Neural Network is widely depicted. The architecture of the
implemented intelligent controller is explained. In Section 3, results, performance and validation are
all discussed, and finally, Section 4 concludes this investigation by establishing the link between the
objectives and results obtained.

2. Research Methodology

In Fig. 1 illustrates the UAV employed in this work; it also explains the reference systems used
in the mathematical model. The body frame will be assigned with the letter b and the inertial refer-
ence with the letter i. Fig. 2 presents the configuration of the vehicle’s rotor up and establishes the
corresponding direction of rotation.

Body frame

Fig. 2. Direction of rotation of the rotors
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2.1. Mathematical Modeling of the Quadcopter

The vectors & = [z,y,2] and € = [#,4, 2] describe the quadcopter translational position
and velocity, respectively. In the same manner, the orientation of the UAV will be represented by
the rotation matrix R’ : b — 4, which is obtained from the rotation around each of the fixed axis as
follows:

R = R.(¢) Ry(0) Ra(0) 6]
Using the commonly sequence of rotation employed in aeronautics. Each rotation matrix is given by

1 0 0
Ro(@) = [0 cos(¢) —sin(9)
|0 sin(¢)  cos(¢)

[ cos(6) 0 sin(h)
R,(0) = 0 1 0 2
| —sin(d) 0 cos(8)

[cos(¢p)  —sin(yp) 0
R.(¢) = |sin(¢) cos(y) 0
0 0 1

With ¢, 6 and v the roll, pitch and yaw angles, respectively.The rotation array employed is depicted
in Fig. 3. The figure shows the angles that define the orientation between the inertial and body frames.
From equation (1), it follows that

cos ) cos 6 sin v cos 6 —sinf
R; = |cosysinfsin¢ —siny cos¢ sintysinfsin¢g + cosypcos¢ cosfsin @ 3)
cosysinf cos g + sinysing sinysinfcos ¢ — cospsing cosbcos ¢

Fig. 3. Rotation matrix diagram

The velocity expressed in body frame coordinates is V' = [u v w]". The relationship between body
frame and inertial frame velocities is given by the expression:

=RV 4)

The angular velocities with respect to the inertial frame will be designated as [qﬁ 6 w]T and
in reference to the body frame, the velocities will be w = [p ¢ r]". To transform these velocities
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from the inertial frame to the body frame, some considerations are needed, e.g., é1 = [1 0 0],
é2=[010]" and é3 = [0 0 1], hence one can show that:

W= é1¢ + Ry(¢) 260 + Ry (¢) Ry(6) é3¢) (5)
P ¢ 0 jﬁsin@ . <z'3—|—1.ﬁ'sin«9
q| = [0] + [fcosop| + —'wsinqﬁcosﬁ = Qcosé—zg}singbcose
r 0 fsin ¢ 1) cos ¢ cos 6 0 sin ¢ + 1) cos ¢ cos 6
Where the matrix form is:
P <Z> 1 0 —sind <Z>
q| =J1(¢,0) |0 = |0 cos¢ singcosf| |0 (6)
r 0 0 —sing cosgceosf]| |4

Where J1(¢, 0) is the transformation matrix to change the angular velocities from the inertial refer-
ence system to the body fixed system. Which establish the inverse matrix as follows:

g@ 1 singtanf cos¢tand| |p
0| =J Yo,0) |0 cos ¢ —sin ¢ q @)
¥ 0 singsecd cosgsect| [r

Where the value of # # 4+ 90 has to exist in order to compute the inverse transformation.

The equations that describe the dynamics of any rigid body which mass center is subjected to
external forces have to be expressed in the body fixed reference frame, which can be described with
the Newton-Euler method as follows,

mlIss 0] [V] | [wx mV] [F?
o ] ] [

Where I5y3 € R3*3 is the identity matrix, m is the total mass of the vehicle, and

L 0 0
J=10 1, 0 ©)
0 0 I,

Is the inertia tensor. Fig. 4 shows the forces produced by the rotors on the unmanned aerial vehicle,
as well as the direction of the rotation axis, respectively with its angles.

mg

Fig. 4. Aerodynamic angles and produced forces
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Designating n = [¢ 6 ¢/]T € R3 as the angular position with respect to the inertial frame system;
the equations of movement of a rigid body, then can be written as, [27]:

§ =RV
mé = R'F?
S (10)
n=J (nw
Jo=—-w x Jw+ 7
To express the forces acting on the quadrotor one has:
R'F? = —mgés + <ZCTQ?>Rlé3 + Ap (11)
i=1
Where Cr represents the coefficient of thrust. The torques will be represented by
4
== Jr(w xé3) Qi+ 7+ Ag (12)
i=1

Where g is the gravitational constant, g = 9.81m/s?, Jp is the rotational inertial moment around
the rotor’s axis, wj is the angular velocity of the ¢ — nth rotor and the vectors Ay = [A; Ay A, ]T
and Ap = [Ap A A, ]T represent the aerodynamic forces and torques on the vehicle. Taking into
account, the last equations the dynamics model can be arranged as, [27]:

§=V
T Ar
V=- R, — Q) +—
ges + g, (Z_; Z) + -
_ - (13)
n=J 1(n)w
4
JCZ):*LL)XJW*ZJR(WXég)Qi+Ta+AR
i=1

The main control input U; applied on the aerial vehicle can be represented as,

4 4
Uy = (Z fi> _ (ZCT95> (14)
i=1 =1

Where f; is the thrust force generated by each rotor. Writing the state vector in extended form one
has,

x:[xyzj;yé¢9wpqr]T (15)
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Hence, the equations of movement that describe the dynamics of the quadrotor can be written as:

T=1u
=
=w
L1 . o Ay
i = —(costysinfcos +sinysin @)Uy + —
m m
1 A
= —(sinzﬁsin@cosqﬁ—i—coswsingb)(h + =2
m m

1 A,
Z= —g+%(c059cos¢)U1 +E

¢ =p+qgsingptanh + rcos ¢ tanf
0 = qcosd —rsing

1 = gsin ¢ sech + rcos psect

. I, - L. JrQ A,
= r— +—Us+ 2
I.,—1 JRrQ2 l A
_ 12z :r:ppr + R Dt —Us + g
Iyy Iyy Iyy Iyy
Ly — Iy 1 A,
= Wpgt —Uy+
L. ML

(16)

Where Uy = 1 Cp(—Q3 + Q3), Us = 1Op(—2 + Q3) and Uy = Cp(—032 + Q3 — Q% + Q3);

where the Cp is the drag coefficient of the aircraft.

The next Table 1, describes the physical features of the UAV, all the information cited below
is extracted from the research article [28], that also uses the Mambo Parrot quadrotor as a scientific

platform:

Table 1. Quadcopter parameters

UAYV Characteristics Units

Dimensions 132 x 13.2 x 4.1 cm

Weight 0.063 kg
Motor Brushless (4)

Flight time 8 min
Sensors IMU Ultrasonic  Pressure
Camara Monocular 60 FPS
Distance Arms l 0.0624 m

2.2. Controller’s Architecture

This section describes the controller architecture in the unmanned aerial vehicle system. The
figure shows in a block diagram the methodology and design of the intended PID controller, using
an Artificial Neural Network (ANN) [29]. The block model depicts the overall control architecture
of the whole system, including all the designed controllers from the Mambo Parrot; the blocks not
only show the altitude controller but also the other subsystems controllers, such as position, yaw and

attitude, that configures the complete quadrotor system shown in Fig. 5.

2.3. PID Controller

The importance of the PID controllers remains principally for three main reasons: record of suc-
cess, simplicity in use and wide availability. These justifications reinforce each other, by ensuring
that the general framework of digital automatic control with higher order controllers has not really
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been capable to substitute PID control [3]. Even in the case where the complexity process of con-
trol requires multiple - loop or multi - variable solution a network based on PID control blocks is
used. In the manned aviation only PID controllers are implemented. The next equations describe the
continuous and discrete time mathematical PID formula, [3]:

de. tau_pict tau_pitch

Switch_refAtt

‘Allitude Controller theasts_fetout

motors_refout

(@ Smm———

Yaw Controller

tates_estim

ReferenceValueServerBus . pos_ref O—».—»p 62 alitude_cmd F—— totalThrust

ReferenceValueServerBus . takeofl_flag @————p{takeoff_flag

‘Atttude Controller

ControlNixer

Fig. 5. Mambo parrot’s control system

Ul(t)zkpe(t)+KI/ e(T)dT—&-k:D% : Uln) = +kZ )+ ka (e(n)—e(n—1)) (17)

T

where: k; = —i and kg =

Particularly, in the context of unmanned aerial vehicles quadrotors, a comparison can be estab-
lished between PID controllers and SMC (Sliding Mode Control), associating this distinct advan-
tages and challenges with each control strategy. This comparison is intended to strength the research
methodology applied in this investigation. The next Table 2 establishes the above described com-
parison, where in conclusion the choice between PID and SMC for UAVs largely depends on the
specific application requirements including desired performance characteristics and environmental
conditions, [30].

Table 2. Comparison between PID & SMC

Features PID SMC
Complexity Low High
Robustness Moderate High

Ideal Application Linear Systems  Non Linear Systems
Parameters Adjustment Manual Setting Automatic
Sensitivity High Low

Inside the recent developments in controllers for unmanned aerial vehicles, specifically in quadro-
tors, advances have been made using different control strategies, which comprises the use of ANN
and MPC (Model Predictive Control), both techniques are frequently employed in robotics, power
systems and automation. The ANN is commonly used in applications where system dynamics are
highly nonlinear or difficult to model accurately, such as robotic control systems, rehabilitation de-
vices, and adaptive systems, [31], [32]. Meanwhile, MPC is widely applied in industrial processes,
power systems, and situations where constraints must be explicitly handled, such as chemical pro-
cess control and energy manage systems. While both controllers offer advance solutions for control
problems, they cater to different need based on system characteristics, complexity, and operational
requirements, [33], [34]. ANNSs excel in an adaptability and quick execution after training, while
MPC provides robust performance with optimal control strategies but may require more computa-
tional resources. Due to the understanding of these differences, the appropriate control strategy has
been selected, as the next Table 3 shows, [35]
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Table 3. Comparison between ANN & MPC

Features ANN MPC
Learning Method Data - Driven Learning Model - Based Optimization
System Representation No Explicit Model Required Requires a Predictive Model
Constraint Handling Limited Explicit Constraint Handling Explicity incorporates Constraints
Adaptability Highly Adaptable Less Adaptable; relies on Model Updates
Computational Requirements Fast Inference Post - Training High Computational Cost per Step

2.4. Altitude Controller

The difference between the desired altitude z,..y and the actual measured altitude Zxp ~ z,
estimated using a Kalman Filter, is designated as the regulation error, this is, thus, the controller Uy
will output a correction signal to keep the aerial vehicle flying at a desire altitude [36].

e(k) = Zref — ZKF (18)

The next figure indicates the general architecture for the altitude controller of the system, where
2Kk F ~ z shown in Fig. 6.

.f—‘ I>— L= ]

e 5 ®
. P * =
ZKF
@’
D

Fig. 6. Altitude controller

2.5. Artificial Neural Networks (ANNs)

An Artificial Neural Network (ANN) is a mathematical model that simulates the structure and
functionalities of biological neural networks. The basic building block of every network is an artificial
neuron, i.e. a simple mathematical model [29].

infz‘(Zwijxj—ei)? wig = 0; o =1 (19)
=0

Such calculation unit has three simple sets of rules: multiplication, addition and activation. The
objective of the neuron is that the inputs x; are weighted w;;, this means that every input value is
multiplied with individual weight; in the middle section the neuron sums all weighted inputs w;;x;
and bias 6;; the neuron output y; is the addition of all previously weighted inputs and bias crossed
through an activation function f;(-) [37].

Since the current use of the artificial intelligence, different training methods have been desig-
nated to help the networks to learn simple and fast, one of the current used methods is the BP - Back-
propagation which finds the minimum error function from a determined learning problem through the
descent in the direction of the gradient shown in Fig. 7. The combination of weights which minimizes
the error function is a solution of the learning problem. It is needed the computation requirement of
the gradient error’s function, at each iteration; continuity and differentiability of the error function
must be guaranteed, [29].
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Fig. 7. Artificial neuron

2.6. Genetic Algorithms (GA)

Genetic Algorithms (GA) are optimization methods, an optimization problem generally is given
in the form, find an zy € X such that f is maximal x¢ where f : X — R is an aleatory real valued
function, this is f(zg) = maz f(x) [38].

T e

The general concept of the use of a GA basically relies in four main components:

e Selection: Process for selecting individuals for reproduction according to their objective func-
tion value (fitness).

e Crossover: Method of bringing together the genetic information of two individuals, if the
right coding is properly chosen, two good parents would produce a good children.

e Mutation: The genetic material can be changed randomly by erroneous reproduction. In GA
mutation is a random deformation of the individuals with certain probability; the preservation
of the genetic diversity is an effect of the local maximal being avoided.

e Sampling: Process which computes a new generation from the previous one and it is dece-
dents.

Other optimization methods, such as Newton or Gradient Descent don’t have the same advan-
tages as the GA algorithm, e.g. the algorithm manipulates encoded versions of problem parameters
instead of parameters themselves. Contrary to the traditional methods the GA algorithm searches to
a whole population of points instead of one, reducing the risk of getting trapped in a local stationary
point. GAs do not use auxiliary information about the objective function value such as derivatives, i.e.
it can be applied for continuous or discrete optimization problems. Finally, a GA uses probabilistic
transition operators, specifically to create new generations, [29]. Hence, the basic structure of Genetic
Algorithm can be written as follows:

GA - Algorithm:

t: =0;

Compute initial population By ;

while stopping condition not fuldilled do
begin;
select individuals for reproduction;
create offsprings by crossing individuals;
eventually mutate some individuals;

end
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2.7. GA - ANN Self Tuning PID Controller

In this subsection the developed controller will be explained, and its overall architecture will
be depicted. A Genetic Algorithm (GA) is an adaptive heuristic search algorithm that imitates bio-
logical evolutionary mechanism of the survival of the fittest, this algorithm is widely used to solve
optimization problems in combination with Artificial Neural Networks (ANNs) [39]; GA is efficient,
practical and robust, by selecting the best individuals it optimizes the weights and thresholds of the
neural network, avoiding to fall into local optima an improve the training speed effectively. Although
a BP Neural Network is highly accurate, there is improvement space.

The idea of the improved neural network with GA, firstly by Genetic Algorithm structure of
neural network, the initial connection weights, optimize the architecture of the initial threshold and
learning rate and momentum factor, locate the better search space and the solution space, then the
ANN algorithm is used in the small solution space of the network connection weights and thresholds
re-optimization, search the optimal solution, the optimized ANN can predict better the output func-
tion, [26]. The developed controller is based on the synergy composed of a feed forward multi-layer
artificial neural network fused with a genetic algorithm. From this combination the prediction ca-
pabilities of the neural network are improved, which estimates with high precision the proportional,
integral and derivatives gains that make up the altitude controller of the unmanned aircraft.

The methodology implemented to build this novel control strategy, consists primarily of execut-
ing a genetic algorithm, employing an ITAE (Integral Time Absolute Error) as a main cost function,
which aims to minimize it. The choice of implementing the ITAE consists in the broad use in con-
trol systems to optimize the performance of controllers. It emphasizes minimizing error over time,
which is critical for systems requiring fast response to disturbances. The ITAE drives the system
toward faster convergence and stability; it also minimizes the overshoot in the response, [40]. The
cost (fitness) function to be minimize is the ITAE performance criterion; the integral of the absolute
magnitude of error criterion is defined as: ITAE = fOT t | e(t) | dt. The function’s index has the
advantages of producing smaller overshoots and oscillations than the Integral of the Absolute Error
IAE or the Integral Square Error ISE indices. Therefore, it is the most sensitive of the three, i.e. has
the best performance, [41].

Once the GA has found the optimal gains values, the obtained output is used as a database to
feed, establish and train the artificial neural network. Through the input data, it adjusts an optimizes
its weights and thresholds. As well as the ITAE criterion, the Mean Square Error is a widely use metric
for measuring the average squared difference between predicted and actual values, it assesses model
accuracy; its lower value indicates better model performance, [42]. Subsequently, the Mean Square
Error (MSE) belonging to the network is evaluated over time for each iteration, which decreases by
updating new weights and thresholds. The method used to train the network is called BP, by means
the Levenberg - Marquardt optimization method, based on gradient descend. The next block diagram,
Fig. 8, illustrates the described process.

It is worth mentioning, that the integration of GA with ANN has demonstrated performance
in automatic control systems by reducing the time required to train the network and increasing the
precision in the predictions and decisions made by the system. In studies were both GA and ANN are
applied, it has been found that the model generated by GA can outperform ANN in terms of robustness
and predictive capacity, especially in contexts with high variability or noise in the data [43]. As the
block diagram, Fig. 8, explains in its information flow.

To conceptualize the process of the network creation starting from the use of the datasets, the
network structure denotes the input into the network and shows the three calculated outputs; the
hidden layers are made up of three layers, the first one has ten neurons, the second and third one has
eight neurons respectively shown in the Fig. 9.
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In Table 4 illustrates, the mathematical link between the ANN structure and its mathematical
counterpart. The table describes each of the layer’s inputs and outputs and its corresponding equa-
tions; in the same manner it shows the employed activation function, as well as it correspondingly

designation.

Table 4. ANN architecture

ANN’s Equations ANN’s Features
N; = Z Wij ex Hidden layer input
i=1
Ny = W Hidden layer output
T= Z Niphhro Output layer input
j=1
0Kprp = W Output layer output
e=0Kpip—T Training error
- 2
> e
MSE = =— Mean Square Error
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3. Results and Discussion

In this section, the results obtained from this research project are presented, the results show the
performance of the implemented controller, based on the synergy from an Artificial Neural Network
(ANN) with a Genetic Algorithm (GA). The next graph shows the activation function used in the
ANN Fig. 10. The block diagram in Fig. 11 illustrates the setting configuration of the designed
controller, which highlights the cooperation between the ANN and GA algorithms to stabilize the
MAV, it is worth mentioning that in aerial terms the stabilization of the aircraft is of great importance
to validate the parameter [44]. The design of the GA is programmed in order, that none of the three
gains of the vehicle’s PID controller exceed the constant value 10 [45] - [46]. For its structure the
main consideration was the ITAE, as previously explained; 25 generations were considered to train
the Genetic Algorithm and the designed population consists of the best 50 individuals.

Fig. 10. Activation function of the ANN (tan - sigmoid transfer function)

GA

(5K;, 8Kp , 6Kp)

e(k)

5K,

.\l"uu '...‘

5Kp

r(k) O

\\‘_/ PID(discrete) *’ y(k)

Fig. 11. Controller structure

The designed network is SIMO (Single Input Multiple Outputs) type, which includes an input
layer, three hidden layers and three output layers, as shown in Fig. 12. The first hidden layer is made
up of 10 neurons, while the second and third one is made up of 8, respectively. The network used
is a Feed-forward type, the BP method used for its training is the Levenberg - Marquardt, due to
its excellent convergence speed. The activation function employed for the three hidden layers is the
sigmoid tangential function, 500 iterations or epochs were used for optimal training and an objective
error of the gradient with the value of 0.0001 was considered.
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The following Fig. 13 shows, the behavior of the gradient used for the network optimization.
Additionally, as can be seen, despite of the a priori establishment of 500 epochs for the optimal
training, the network finds its own optimal point of convergence in iteration 298. The objective of the
illustrations is to establish the numerical methodology implemented of the design of an ANN, which
in the corresponding literature is established as an art and not as a recipe, i.e. this is the real meaning
of the use of Artificial Intelligence (Al).
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T T T

gradient
N
=
=
)
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h_lLll | | |
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Fig. 13. Training parameters
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During the training process it is important to consider the optimization of the error as explained,
this parameter has to be minimized, in order that the network finds the optimal solution; Fig. 14 shows
this process graphically, in which one can observe the steps required from the network to reach its
goal. As expected, even though an Artificial Intelligence (Al) is processing, every dynamical process
in the nature relies in the developed Gauss Region.
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Fig. 14. Error optimization

It is important to remember that to evaluate the performance of the neural network, Linear Re-
gression Analysis is considered, which is used to predict the dependence of two variables, i.e. the
value of a variable based on the value of the independent variable. When the unity is reached the
data fit is perfect. As can be seen in the Fig. 15, the graph depicts a data adjustment equivalent to
80 %, which is a satisfactory result to evaluate the performance of the designed network; the achieved
percentage in the output data fulfills the establish goal, taking into account the complexity of the
unmanned aerial vehicle dynamics.
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The statement of the achieved 80 % being satisfactory, may be interpreted particularly in relation
to the specific application and data set used; i.e. the complexity and size of the data set is challenging
and unbalanced, which again, 80 % may indicate a robust model. Where the performance level from
an ANN is convincing under certain conditions, it is essential to evaluate this context with data set
characteristics, and overall model robustness. Nevertheless, as mentioned, understanding the UAV’s
operational environment is crucial.

3.1. Controller Analysis

To test the proposed control algorithm, the simulation environment from the Mambo Parrot in
MATLAB & SIMULINK is considered, the Fig. 16 shows the hover mode of the aircraft that is being
controlled from the proposed control algorithm.

Fig. 16. UAV stationary control

The height at which the controller comes into action is 1.1 m, taking this parameter as the refer-
ence signal to follow [47]. The reference signal is been reached by the MAYV, managing to maintain
it in hover flight over the time. To demonstrate the effectiveness of the mathematical model and the
altitude controller, a comparison Table 5 between the PID and the ANN - GA is included [48]. The
Table shows some signal characteristics belonging to the altitude controller performance, as observed,
it varies between attributes of the control signals.

Table 5. Comparison between PID & ANN - GA

Signal Statistics PID Baseline = ANN - GA

Rise Time 661.244 ms  766.566 ms
Preshoot 0.521 % 0.549 %
Overshoot 3.646 % 9.341 %
Undershoot 1.973 % 1.867 %
ITAE 2.459 1.682
ISE 0.4765 0.4898
TAE 0.8222 0.852

The following Fig. 17 illustrates the performance of the controller implemented based on an
ANN optimized from a GA. In the same way, it can be seen in the graph, that the designed controller
manages to maintain and establish the aircraft satisfactorily at the selected reference signal of 1.1m
throughout the simulation time.

Looking at Fig. 18, it can be observed that the implemented controller has a similar behavior with
the original Mambo’s PID controller, nevertheless in the comparison one can see the improvement
with the synergy of both artificial intelligence algorithms, in terms of reducing the settling and rise
time, the implemented controller demonstrates the efficiency of the stabilization in less time of the
quadrotor [49], [50].
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Fig. 18. PID vs ANN + G'A control comparison

As can be seen in the Fig. 19, the robustness of the designed controller against external dis-
turbances on the altitude parameter of the aerial vehicle is observed, considering that the quadrotor
employed is designed to fly mainly indoors under ideal conditions, without considering disturbances
of any kind, the performance of the implemented controller is acceptable eventhough the UAV is
disturbed; the controller based on the artificial intelligence algorithms shows efficient behavior. To
analyze the trajectory tracking error of the variable altitude, the error known as Integral Time Absolute

Error - ITAE is considered.

Altitude (z) (m)

== Zyes
_PIDM!”
—— ANN + GApon

Fig. 19. Perturbated controllers performance

In the following Fig. 20, it can be seen that the performance of the developed controller is much
better than the original Parrot Mambo controller; taking into consideration, the simulation time used,
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the magnitude of the ITAE from the controller based on artificial intelligence is much lower than the
original controller of the unmanned aerial vehicle, which as observed has an increasing trend over
time.

,
0 5 10 15 20 25 30
Time (s)

Fig. 20. Controller ITAE’s comparison

The appropriate simulations that consider the total behavior of the errors employed is a deter-
mining characteristic of the real numerical analysis. Which is the principal intention of these graphs
Fig.20 and Fig. 21, i.e., to test the real numerical and absolute behavior of the artificial intelligence
algorithm implemented.

—ITAEp;
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Fig. 21. Perturbated controller ITAE’s comparison

It should be emphasized that even though the MAV is subjected to external disturbances on the
controlled variable, both controllers show robustness to them, even so the controller designed with
the arrangement in the ANN - GA shows better performance over all in the time compared to its
counterpart.

4. Conclusions

The results of this research demonstrate the effective performance of an intelligent controller,
structured around an Artificial Neural Network (ANN) optimized by a Genetic Algorithm (GA). This
controller successfully adapts and enhances the MAV’s PID gains over time, achieving optimal self-
tuning behavior.

The PID gains optimization process leverages a Genetic Algorithm, which iteratively calculates
the optimal gains. This process, initialized with a robust data set of 6000 input-output values, drives
the training of the ANN using the Levenberg - Marquardt optimization method, leading to significant
improvements in controller performance.
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The findings confirm that the self-tuning controller effectively generates improved gain values,
which are dynamically optimized through the intelligent algorithm. Notably, the self-tuning con-
troller achieved a lower ITAE difference value of 0.776, i.e., a 31.6% lower ITAE than the original
PID controller, demonstrating superior performance in maintaining stability, even when subjected to
external disturbances. Moreover, the controller exhibits robust performance in the presence of exter-
nal disturbances, effectively absorbing these perturbations and maintaining high level stability, which
is critical for reliable MAV operations.

As possible future works, the results of this article could be applied in many different scientific
fields of the automatic control theory, for instance, the architecture of the actual altitude controller
could be easily implemented to intend control other state variables of the aerial vehicle. Finally, this

type of designed controller can be implemented in rotary and fixed-wing UAVs to execute flight mis-
sions with higher complexity.
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