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1. Introduction 

1.1. Motivation and Background 

Fault detection (FD) in power distribution systems (PDSs), particularly in radial systems is 

critical for maintaining system reliability and preventing extensive damage undetected or 

inaccurately localized faults can lead to prolonged outages, damage to infrastructure, increased 

operational costs, and safety hazards for both utility personnel and the public. The challenge is further 

compounded by the integration of distributed generation (DG), which introduces additional 

complexity and variability into the system, making traditional FD methods less effective. PDSs are 

critical components of the electrical grid, responsible for delivering electricity from substations to 
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well-suited for real-time applications. 
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end users. Ensuring their reliability and stability is paramount, as any disruptions can lead to 

significant economic losses and safety hazards. Among various types of disturbances, short circuit 

faults (SCFs) are particularly detrimental, causing equipment damage, power outages, and system 

instability. Therefore, the development of effective fault diagnosis and localization methods is 

essential for maintaining the robustness of PDSs [1]-[3].  

The integration of different power plants into a system changes the activities and performance 

of the system. It is not possible to design and build PDS in such a manner that it never experiences a 

fault, where a fault is defined as discomfort brought on by an abnormal flow of current inside the 

system. These malfunctions are, in the vast majority of instances, inevitable because of unfavorable 

weather conditions, the interference of birds on overhead wires, and other factors like air pollution. 

Certain faults are not severe, but the vast majority of faults produce significant damage to the DSs 

[4]. This damage includes the creation of an arc, the tripping of switchgear components, damage to 

the insulation, and damage to the components. These malfunctions lead to blackouts in the PDSs and 

have the potential to be harmful to living beings [5]-[7]. 

Numerous research investigations are carried out to identify the numerous malfunctions that 

might take place inside the PDS. Open-circuit faults are the most common kind of fault that may 

occur in a PDS. This type of failure takes place whenever there is an interruption in the circuit, which 

can take place due to an open switch or a break in the conductor. If a distribution line has a failure, 

the essential steps must be performed to eradicate the fault as quickly as possible and bring the power 

supply back online. At the moment, the majority of intelligent terminals that are configured via the 

various units of the distributed PDS interface with the main system to find out where the problem is 

located. In general, a comprehensive array approach is used to locate faults [8], [9]. 

In recent times, the primary objective of power engineers and researchers has been developing 

methods for the early identification of defects. Recent advancements in PDSs have introduced new 

complexities and challenges in FD. Modern PDSs often incorporate DGs such as photovoltaic 

systems (PVSs), energy storage devices, and electric vehicle (EV) charging stations. These elements 

introduce bidirectional power flows and variable operational conditions, making traditional fault 

diagnosis techniques less effective. Consequently, there is a growing need for advanced analytical 

methods that can handle the dynamic nature of contemporary PDSs [10]-[12].  

1.2. Literature Review 

Additionally, with the growth of powerful computer data processing technologies such as cloud 

computing, artificial intelligence computational algorithms are increasingly being employed for fault 

location (FL) and are garnering a growing amount of attention. Tellegen's theorem is used to locate 

the open-circuit segment or failed node in the network utilizing input and output port information. 

Voltage and current phasor information is obtained via DFT-based phasor measuring equipment and 

it is discussed in [13]. It was proposed a system that uses VMD to dissect the distribution line's 

current signal rate of change. The most crucial mode's energy is used to find problems. In grid-

connected and islanding microgrid (MG) operating modes, the suggested technique is tested for pole-

to-pole and pole-to-ground faults with wide variations in FL, fault resistance, and DG penetration 

[14], [15].  

Using a GIS-generated DG topology, a petri-net-based fault identification model is constructed. 

It was suggested a technique that employs fault indicator fault flags, circuit breaker statuses, pre, and 

post-current measurements, and feeding and lateral loadings [16], [17]. A DG fault monitoring 

system based on edge computing was proposed in [18]. This system is capable of detecting and 

responding to DG problems in real-time and can improve reliability and user satisfaction by detecting 

and responding to PDS faults quickly. PDSs that use DGs are diagnosed through an integrated FL 

and isolation approach based on the fully decentralized multi-agent system, which includes primary 

and device failure prevention [19]. In [20], a novel technique of locating SCFs  on 11-kV overhead 

distribution lines using a noncontact magnetic field (MF) measuring device was proposed. The 

technology employs magnetic sensors that were very sensitive and energy-efficient to detect changes 



532 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 5, No. 1, 2025, pp. 530-554 

 

 

Abhishek Raj (Wavelet Analysis- Singular Value Decomposition Based Method for Precise Fault Localization in 

Power Distribution Networks Using k-NN Classifier) 

 

in MF levels throughout the distribution lines. It was proposed a FD that enhances the detection 

accuracy of faults by making use of the commonalities in fault data streams across different sites in 

a PDS. The collected similarities add to the knowledge needed to identify faults in a particular region, 

allowing for more tasks to be learned at the same time and increasing learning accuracy [21], [22].  

One-dimensional convolutional neural networks and waveform fusion are used in this article to 

locate fault lines. Waveform fusion happens when a line-to-ground (LG) fault arises when the first-

half waves of zero-sequence currents are collected and overlaid on each other. A 1-D CNN is utilized 

to detect whether the fused waveform source has a fault line in the fused waveform. Next, it utilizes 

the 1-D CNN output to update the counter value to find the fault line in the system [23]. An in-depth 

review of the distribution network FD and protection mechanisms merged with DG was presented in 

[24], [25]. Threshold filtering and time-frequency distribution filtering were used sequentially in 

[26], to de-noise transient zero-sequence currents using GST with a variable factor.  PDSs faults are 

diagnosed using a support vector machine (SVM)-based machine learning (ML) classifier discussed 

in [27]. A system for the detection of wildfires based on deep learning (DL), with application to the 

FL in PDSs, was discussed in [28]. It was proposed a single-LG fault diagnosis algorithm with 

distributed parameters which were characterized by asymmetry and line resistance [29], [30].   

Fault diagnosis using smart meters (SM) in PDSs was discussed in [31]. State estimation (SE) 

was used in [32] to identify SCFs and detect them. In the first phase, the standard SE technique was 

reworked such that it may be used in the presence of faults. After diagnosing the faulty zone, a FL 

algorithm based on the revised SE was also proposed. Discrete wavelet transform (DWT)-based SCF 

diagnosis in the PDS was discussed in [33], [34]. Using the Hilbert-Huang transform and ANN 

classifier, [35] offers a technique for diagnosing faults in a PDSs. It was proposed a data-driven ML 

technique based on the distance between the defects that must be used to properly diagnose problems 

[36]. A waveform vector embedding technique is presented in this study [37] as a means of 

embedding the incipient fault waveforms of various devices in waveform vectors. Then, it uses the 

waveform vectors to create a waveform dictionary, which was a collection of waveforms.  

MG changes are detected using a variety of ML algorithm-based classifiers. DWT-based signal 

processing was used to evaluate transient signals, and a classification technique is employed to 

identify the fault and non-fault data and was discussed in [38]. Traditional fault diagnosis methods, 

such as impedance-based techniques and traveling wave methods, have been widely used. However, 

with the evolution of PDSs incorporating modern topologies such as the integration of DGs, and 

advanced grid management technologies; these conventional methods face new challenges. The 

increased complexity and dynamic behavior of contemporary PDSs necessitate the development of 

more advanced and robust fault diagnosis and localization techniques. In recent years, signal 

processing and ML techniques have shown great promise in enhancing fault management 

capabilities. Wavelet analysis (WA) is one such signal processing tool that excels in capturing 

transient features of fault signals, making it highly suitable for FD in PDSs. Singular value 

decomposition (SVD) is another powerful technique for dimensionality reduction and feature 

extraction, simplifying complex data while retaining essential information. Combined with ML 

algorithms like k-Nearest Neighbors (k-NN), these techniques can significantly improve the accuracy 

and efficiency of fault diagnosis and localization. 

1.3. Contributions 

• The primary addition that this work makes to the existing body of knowledge is the development 

of a novel feeder protection relay that is based on signal processing and a ML classifier. This 

relay is designed to identify, classify, and locate fault zones in DSs. To locate the protective 

zones inside the DSs, a whole new approach based on graph theory and the slime mould 

algorithm (SMA) has been developed. The k-NNN ML classifier is used to categorize these 

protective zones. To analyze the behavior of a signal, a multi-resolution WTs with the name 

wavelet packet decomposition (WPD) with SVD is used to dissect healthy and defect signals. 

The technique that has been suggested provides an accurate algorithm that can identify and 

categorize defects in both normal and noisy environments. The approach that has been suggested 
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is also an algorithm that can be generalized and is capable of operating effectively despite any 

changes in the structure of the grid. 

• A key limitation identified in the current methodology is the insufficient depth of empirical 

validation and comparative analysis with existing fault diagnosis techniques. While the 

proposed approach introduces several innovative components such as the SMA for optimal 

measurement placement, GT for protection zone partitioning, and the WA-SVD method for 

enhanced signal processing its real-world applicability remains unconvincing without robust 

experimental validation. To overcome this, the methodology must be rigorously tested across a 

broad spectrum of fault scenarios under various operational conditions, including varying fault 

types (e.g., single-LG, double-LG, etc.), fault inception angles, and the presence of noise. The 

performance of the proposed techniques should be benchmarked against established methods, 

such as traditional wavelet-based FD, S-transform-based approaches, or ML classifiers like 

SVM and ANN. The key performance indicators (KPIs) that should be analyzed include: 

1. The ability of the proposed method to accurately classify different types of faults, as 

compared to existing methods. 

2. The precision in determining the exact location of the fault along the distribution line is 

measured against the ground truth. 

3. The time required for processing and analyzing fault data, particularly in real-time 

applications, compared to conventional techniques. 

4. The resilience of the proposed methodology in accurately diagnosing faults under noisy 

conditions or in the presence of variable load conditions. 

5. The capability of the method to maintain performance as the size and complexity of the 

network increase. 

A thorough empirical validation should involve not only the IEEE 33-bus and IEEE 13-bus test 

systems but also more extensive, real-world datasets if available. Comparative analysis should 

present quantitative results that clearly demonstrate the advantages or any potential drawbacks of the 

proposed approach relative to the state-of-the-art. Incorporating these empirical results will 

substantiate the claims of the paper, providing clear evidence of the methodology's efficacy and its 

potential to improve fault diagnosis and localization in PDSs. Only through this rigorous validation 

can the proposed techniques be deemed viable and potentially transformative for real-world 

applications. 

SCFs in PDSs, such as the IEEE 33-bus radial network, pose significant challenges due to their 

potential to cause severe damage, disrupt service, and endanger safety. FD accurately and promptly 

is crucial for maintaining system stability and minimizing downtime. Traditional FD methods, like 

overcurrent and distance protection, often fall short in complex systems, particularly in the presence 

of noise and DG, which can alter fault characteristics and hinder detection accuracy. To address these 

challenges, this research introduces a novel approach that combines the SMA with WA-SVD. This 

methodology optimizes the extraction of fault-related features, even in noisy environments, 

enhancing the accuracy of FD. By integrating this approach with a k-NN classifier, the proposed 

system not only improves fault localization but also provides a robust solution for managing SCFs 

in modern PDSs. 

2. Proposed Methodology 

The zone of SCFs in the DSs is going to be detected, classified, and located with the help of a 

suggested technique that has two stages. The WA-SVD is used in the first step of the process, during 

which healthy and defect signals that have been received from optimally located SMs are analyzed. 

This article presents a novel methodology (WA-SVD) for detecting, classifying, and localizing SCFs 

in PDSs, where it can process fault signals with higher precision and efficiency. 
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WA is employed to decompose fault signals into multiple frequency components, effectively 

isolating transient phenomena associated with faults. This decomposition enhances the signal-to-

noise ratio, which is critical for accurate fault feature extraction. SVD is then applied to these WT 

signals to extract principal features that encapsulate the most significant information while reducing 

data dimensionality. This dimensionality reduction simplifies subsequent classification tasks and 

improves computational efficiency. The WA-SVD method only enhances the accuracy of FD by 

focusing on high-frequency (HF) transient components but also reduces computational complexity, 

making it suitable for real-time (RT) applications. It is particularly effective in environments with 

noisy data, where maintaining the integrity of critical fault features is essential. The flow chart of the 

proposed method is shown in Fig. 1.  

 
Fig. 1. Flow chart of the proposed method 

2.1.  Optimal Placement of SMs Using SMA 

In this article, an optimization strategy that is based on the SMA is used to determine the optimal 

placement of the SM. The objective function of the optimal placement problem (OPP) is represented 

in Eq. (1). The SMA is integral to the FD methodology employed in the IEEE 33-bus radial DS, 

particularly under noisy conditions. SMA is a bio-inspired technique that mimics the foraging behavior 

of SMs, known for their efficient exploration and exploitation capabilities in finding optimal paths for 

nutrient acquisition. It operates through several key phases: initialization, oscillatory movement, 

exploitation, and exploration. The algorithm begins by initializing a population of candidate solutions, 

each representing a potential set of parameters for the signal processing techniques such as the tuned 

Q-factor WT (TQWT). These parameters may include decomposition levels, Q-factors, and threshold 

values essential for accurately extracting features from fault signals. In this phase, each candidate 

solution undergoes oscillatory movements influenced by both local and global best solutions. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒∑𝑍𝑘

𝑛

𝑘=1

 (1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑𝑡𝑜[𝐶] ∗ [𝑍] ≥ 𝑏 

where 𝐶is a connectivity matrix and n is the number of buses. The matrix 𝐶is represented in the form 

of 

Matrix 𝐶𝑖,𝑗 = {

1, 𝑖𝑓𝑖 = 𝑗
1, 𝑖𝑓𝑖𝑎𝑛𝑑𝑗𝑎𝑟𝑒𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑
0, 𝑖𝑓𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 

whereas 𝐵is a column matrix and is represented as  

[𝑏] = [1111111. . .1]1𝑋𝑁
𝑇  

It has been proposed that the SMA has been inspired by the behavioural aspect of SMA [39]. In 

nature, the SM detects the food and thereafter encircles it and eventually digests it by releasing 

enzymes. The properties of SM may be mathematically expressed into three steps: seeking food, 

encapsulating food, and oscillating, which can be represented as follows: The SM tracks the food 

based on the smell dissipated in the air, as presented in Eq. (2). 

 
𝑍(𝑘 + 1) = {

𝑍𝑏(𝑘) + 𝑣𝑏. (𝐻. 𝑍𝐴(𝑡) − 𝑍𝐵(𝑡)), 𝑟 < 𝑝
𝑣𝑐. 𝑍(𝑡), 𝑟 ≥ 𝑝

 (2) 

Here Eq. (2), 𝑍represents the position of the SM, 𝑍𝑏denotes the latest location with the most 

intensified smell (food location), 𝑍𝐴and 𝑍𝐵are randomly selected candidate from the SM, 𝑟is a 

random value between [0,1],𝑘denotes the iterations, 𝐻signifies the SM adaptive weight, 𝑣𝑏is the 

randomly generated value in the range [-a, a],𝑣𝑐represented random value in the range [-b, b] where 

𝑏resembles a value that decreases linearly from 1 to 0 based upon the iteration (𝑏 = 1 − 𝑘/𝐼𝑡𝑒𝑟𝑚𝑎𝑥). 

The probability index 𝑝can be represented as in Eq. (3). 

 𝑝 = 𝑡𝑎𝑛ℎ|𝐽(𝑖) − 𝐸𝐺| (3) 

Eq. (3) 𝐽(𝑘) represents the fitness value corresponding to 𝑍and 𝐸𝐺resembles the best candidate 

solution achieved so far. The parameter 𝑎is represented in Eq. (4). 

 
𝑎 = 𝑎𝑟𝑐𝑡𝑎𝑛 ℎ (−(

𝑘

𝐼𝑡𝑒𝑟𝑚𝑎𝑥
()) ()) (4) 

The adaptive weight 𝐻 of the SM can be represented as: 

 

𝐻(𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥(𝑖)) =

{
 
 

 
 1 + 𝑟. 𝑙𝑜𝑔 (

𝑏𝐺 − 𝐽(𝑖)

𝑏𝐺 − 𝑤𝐺
+ 1) ;     

 first half of population 

1 − 𝑟. 𝑙𝑜𝑔 (
𝑏𝐺 − 𝐽(𝑖)

𝑏𝐺 − 𝑤𝐺
+ 1) ;      

other half of population  

 (5) 

 𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥 = 𝑠𝑜𝑟𝑡(𝐽) (6) 

Eq. (5) and Eq. (6), 𝑏𝐺resemble the best fitness solution achieved in the current position and the 

worst fitness resembles 𝑤𝐺 the latest position. 𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥represents the sorted values of the fitness 

maintained sequentially.  

The SM modifies the search procedure based on the concentration of food as it approaches the 

feeding process. Situation when the food concentration is low, the area's weight decreases; when the 
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food concentration is high, the area's weight increases. However, to enhance the SMA's exploration 

ability, Eq. (7) may be used to update the position of the SM. 

 

𝑍∗ = {

𝑅𝑎𝑛𝑑. (𝑢𝑏 − 𝑙𝑏) + 𝑙𝑏;  𝑟 < 𝑥
𝑍𝑏(𝑘) + 𝑣𝑏. (𝐻. 𝑍𝐴(𝑘) − 𝑍𝐵(𝑘));  𝑟 < 𝑝

𝑣𝑐. 𝑍(𝑘);  𝑟 ≥ 𝑝
 (7) 

In Eq. (7), the lower and the upper bounds of the decision variables are represented by 𝑙𝑏and 

𝑢𝑏,𝑅𝑎𝑛𝑑resemble the randomly generated value [0,1], and 𝑥is set to 0.03 as the best value based on 

trial runs. 

The flow chart for the optimal placement of SMs through the SMA is shown in Fig. 2, the IEEE 

33 radial distribution bus is being considered. It has been determined that the optimal solution for 

the objective function has been achieved, and cases of these optimal solutions can be found in Table 

1. 

Table 1.  SMs optimal placement 

Set Number Bus Numbers 
1 3,5,9,11,13,16,20,22,24,26,32 

2 2,4,6,10,14,16,19,22,25,28,30 

3 3,4,7,10,12,16,18,21,25,27,30 

2.2. WA-SVD Technique 

The wavelet packet transform (WPT) is represented by the following Eqs. (8) and (9). The main 

difference is that the WPT analyses the signal in a more comprehensive manner, which enables it to 

give more flexibility. The wavelet packets-based approach to noise reduction performs much better 

than the wavelet-based method in terms of overall performance. 

 𝑆2𝑛
(𝑗)
(𝑡) = √2∑ ℎ(𝑘)𝑆𝑛

(𝑗)
(2𝑡 − 𝑘)

𝑘

 (8) 

 𝑆2𝑛+1
(𝑗)

(𝑡) = √2∑𝑔(𝑘)𝑆𝑛
(𝑗)
(2𝑡 − 𝑘)

𝑘

 (9) 

where n= 0,1,2….  nd k=0, 1,… m. 𝑆0
0(𝑡) is the scaling function and 𝑆1

0(𝑡) is the mother wavelet 

function. (j) represents the number of decomposition levels.  

The SVD is a matrix factorization that has been used in a wide range of important applications. 

Perhaps this is because SVD can be used to do various numerical operations on matrices. For 

example, one may compute matrix inverses; solve a system of equations; calculate determinants; 

compute a least squares solution to overdetermined systems; and compute condition numbers; norms; 

and column rank, among many more. SVD solves or simplifies many real-world matrices, hence it 

should come as no surprise that SVD is used in numerous applications of matrices [40]. Statistics 

and data analysis aren't exempt from the influence of this crucial factorization, however, Linear and 

extended linear models may be fitted using SVD, among other things (LM and GLM). QR 

factorization is typically used to solve the traditional "linear regression" formulation since it's simply 

linear least squares. SVD, on the other hand, has certain benefits. This is essential for statisticians 

since their so-called model matrices are often rank-degenerate by construction in the context of 

statistical trial design. The iteratively reweighted least squares method may be used to fit a GLM 

with a good LM fitter. The data is organized as a matrix with variables in the columns and 

observations in the rows. There are several ways to approach this problem, but the most common 

approach is to mean-center each column individually and then projects it onto the correct singular 

vectors. The additional variables are arranged in decreasing order of the original dataset's variability. 

Plotting just the first few rows allows for a decent compromise between keeping the original dataset's 
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variability and being unable to see it at all. Assuming we have a square matrix M of dimensions n x 

n. If X is a non-zero n-dimensional column vector, then a real integer is said to be an eigenvalue of 

a matrix A, represented in Eq. (10). 

 
Fig. 2. Flow chart for SMs optimal placement using SMA 

 𝑀𝑋 = 𝜕𝑋, 𝑋 ≠ 0 (10) 

The eigenvector of the matrix M corresponding to the eigenvalue is a vector X meeting 

condition. The term "spectrum" refers to the collection of eigenvalues that make up an M matrix. 
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Some matrices may contain no spectrum at all (that is, no eigenvalues). On the other hand, square 

symmetric matrices often contain n eigenvalues, which indicates that their spectrum is complete. The 

eigenvector X is assumed to be a column vector in Eq. (10). The right eigenvectors of a square matrix 

M are all column eigenvectors that meet condition (Eq. (10). Matrix M may be described by its 

eigenvectors in the same way, as presented in Eq. (11). 

 𝑌𝑀 = 𝜕𝑌, 𝑌 ≠ 0 (11) 

The left eigenvectors of the matrix A are the row vectors that meet Eq. (11). In the general 

scenario, the left and right eigenvectors of both matrices can be different, although the eigenvalues 

of the matrices M and MT would be identical. Its feature that a square symmetric matrix may be 

decomposed into the form is an important property that all square symmetric matrices have. 

 𝑀 = 𝐿𝐷𝐿𝑇 (12) 

where L is the square matrix, D is the diagonal matrix. Eq. (12) is said to be a singular decomposition 

of M. Let us adapt the principle of singular decomposition to a more general category of matrices, 

namely to real rectangular matrices of dimension m x n. This will broaden the application of the 

singular decomposition notion. One way to describe the singular decomposition of a matrix like this 

is by the use of the form, presented in Eq. (13). 

 𝑀 = 𝑈∑𝑉𝑇 (13) 

where U is the left eigenvector of M, V is the right eigenvector of M, and ∑ is the diagonal matrix.  

2.3. Formation of Decision Rules by Entropy Calculation 

Entropy is a measure that gives information about the amount of a signal as well as the 

uncertainty of the signal. As a consequence of this, measurements of entropy may provide 

information on signal flaws. The calculation of wavelet energy is the first step in the process of 

measuring entropy. The energy entropy may be used to represent the attributes of the arc voltage and 

the formula for the energy entropy (Ei) can be stated in Eq. (14). 

 𝑆𝑢𝑚𝑜𝑓𝑒𝑛𝑒𝑟𝑔𝑖𝑒𝑠𝐸𝑖 = |𝐷𝑖(𝑡)|
2 (14) 

In this Eq. (14), the detail coefficients of the wavelet analysis are denoted by Di(t). The extracted 

arc voltage is   ed  n  he   n    r     e  e          n, where ‘ ’     he n   er    e  r     n  e e  . 

The expression for the energy distribution is now the ratio of the total energies, and the definition of 

the energy of the sub-band signal is as represented in Eq. (15). 

 
𝑃𝑖 =

𝐸𝑖
𝐸
, 𝐸 =∑𝐸𝑖

𝑛

𝑖=1

 (15) 

Thus, according to wavelet theory, the expression for the entropy of a signal in mathematical 

notation is represented in Eq. (16). 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑃𝑖 𝑙𝑜𝑔2( 𝑃𝑖)

𝑁

𝑚=1

 (16) 

2.4. A Search-Based Zone Protection Selection 

Graph theory (GT)         e     h     er   e       nd ed e       re   ed  n  h      dy’    wer 

system topology [41], and provide a more in-depth explanation of these principles. For zone 

separation, the following rules are currently being considered: Rule 1 states that a new protection 

zone will be created if an original bus is brought together with the existing protection zone by a 
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vertex. Rule 2 states that if the protection zone includes any similar buses, only one of the clone 

zones shall be kept while the others should be eliminated. 

These two guiding tenets are taken into consideration while solving the search problem, which 

entails finding the optimal location for the SM inside the protection zone. Based on the 

aforementioned two guidelines, a one-of-a-kind protection approach was provided. The stages of the 

method have been evaluated on an IEEE33 bus system, and the steps that were evaluated may be 

seen in Fig. 3. 

FIRST STEP

SECOND STEP

THIRD STEP

 
Fig. 3. Zone protection steps 

The first step involves treating each basic bus as an initial zone. This occurs in the first stage. 

For instance, bus 1 is considered a zone under the IEEE 33 testing system. Second Step: During this 

step, the initial bus searches for other buses in the surrounding area and joins forces with them all to 

create a new zone. In the third step of the process, the search criteria include making a comparison 

between the old zone and the new zone established in the previous step.  The last step of the search 

process is the fourth step, which involves the search algorithm checking to see whether the total 

number of buses in the zone is equal to the total number of buses in the network. If this is the case, 

the search process is finished. Alternately, go on to Step 2. Based on the aforementioned principles 

from the graph theory-based search approach, three zones have been determined, and a tabular 

representation of them can be seen in Table 2. 
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Table 2.  IEEE33 Bus zone protections 

Zone (Z) Bus Numbers IEEE 33 Bus 
ZA 1, 2, 3,19, 20, 21, 22, 23, 24, 25 

ZB 4,5,26,27,28,29,30,31,32,33. 

ZC 7,8,9,10,11,12,13,14,15,16,17,18 

 

The numbers 2, 3, 19, 22, and 24 on the buses listed in Table 2 are the best options for 

positioning SM equipment in ZA. The best places to position measurement devices in ZB are the bus 

stops with the numbers 5, 26, and 30, while the best places to position measurement devices in ZC are 

the bus stops with the numbers 9, 14, and 17. This technique of searching guarantees that a minimal 

number of measurement devices are present in each Z. 

2.5. k-NN Classifier 

The k-NN method is the most common classification technique. This means that it does not 

make any assumptions about the fundamental dataset to classify data. It is well-known for being both 

straightforward and effective at the same time [42], [43]. It is an algorithm for learning via 

supervision. To predict the class of data that has not been labeled, a labeled training dataset is 

supplied. In this dataset, the data points are separated into several different classes. In a specific area, 

it is used to categorize data based on the training examples that are nearest or surrounding. This 

approach is utilized because of its ease of implementation and short computing time. Its closest 

neighbors are determined by calculating the Euclidean distance for continuous data. The 

categorization of a new input is determined by calculating the K closest neighbors and then taking 

the data's majority among the neighbors into account. Classification of the unlabeled data may be 

complicated, and the 'K' value is a significant consideration even though the classifier is simple. 'K' 

may be chosen in various ways, but we can just run the classifier numerous times with different 

values to determine which one gets the best results. All computations are done when training data is 

categorized, not when it is encountered in a dataset. This raises the computational cost. If you're 

looking for a slow learning algorithm, this one isn't going to help you much. The training dataset is 

not generalized in any way. As a result, the full training dataset must be used in the testing phase. k-

NN predicts continuous values in regression. In computing this number, we used the average of the 

K closest neighbors. If a dataset has been partitioned into multiple clusters, k-NN is used to identify 

the class of new input for research in which there is no prior understanding of the data, k-NN is more 

important. The k-NN algorithm is a classification method. Classification is a two-step process: 

This is the first step in the learning process: using the practice data. The classifier has been built. 

The classifier's performance is evaluated. Following the "next closest neighbor" approach, Data is 

categorized by identifying whether it has been previously tagged or not. the social strata its immediate 

neighbors occupy. This idea is used in the computation of an algorithm. In the k-NN algorithm, a 

certain value of K is required. An unlabeled tuple is discovered in the k-NN and conducts two 

operations on the dataset. First and first, it's important to note that this focuses on the K nearest data 

points. It's a reference to the closest K neighbors here. Secondly, by using k-NN's neighboring 

classrooms students can classify the new information.  

3. Results and Discussion  

This article presents a novel methodology for detecting, classifying, and localizing SCFs in 

PDSs, featuring the innovative WA-SVD method. The proposed methodology is validated through 

comprehensive testing on various benchmark systems, including the IEEE 33-bus radial DS the IEEE 

33-bus meshed loop unbalanced DS, the IEEE 33-bus system integrated with PVS, and the IEEE 13-

bus feeder test system. The experimental setup involved simulating a wide range of fault scenarios 

under different operating conditions, including varying fault types, locations, and system 

configurations. The performance of the proposed method is evaluated using key performance 

indicators such as fault classification accuracy, fault localization error, precision, recall, and 
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computational efficiency. The WA-SVD method achieved a fault classification accuracy of 99.08%, 

significantly outperforming traditional methods in the same test environment. The average 

localization error was reduced to 1.2% of the total line length, demon  r   n   he  e h d’   re     n 

in pinpointing fault locations. The k-NN classifier used in conjunction with WASVD exhibited a 

precision of 98.2% and a recall of 99.2%, indicating excellent reliability and sensitivity in detecting 

and classifying faults. Furthermore, the average processing time per fault event was 0.0764 seconds, 

h  h   h  n   he  e h d’            y   r re  -time applications. 

The performance of the WA-SVD is benchmarked against existing state-of-the-art techniques, 

showing superior results in both accuracy and efficiency. These results underscore the effectiveness 

of the WA-SVD in enhancing fault diagnosis and localization in PDSs, making it a valuable tool for 

improving system reliability and operational efficiency. The suggested approach is put to the test 

using a 12.66 kV balanced radial DS in this study. The IEEE33 bus test system and enhanced IEEE 

33 bus unbalanced mesh loop test system are selected to locate SCFs and segregate them from healthy 

zones [44], [45]. Fig. 4 depicts the IEEE 33 bus system block design with appropriately arranged 

SMs. 

While the proposed methodology demonstrates impressive accuracy rates for fault detection and 

localization, with a fault classification accuracy of 99.08% and an average localization error of 1.2%, 

the discussion currently lacks a comprehensive comparison with existing methods. For the proposed 

approach to be fully appreciated in the context of current advancements, a thorough comparative 

analysis is essential. 

 

Fig. 4. Single line diagram of IEEE 33 Bus with SMs placed at optimal location 

3.1. Comparative Performance Analysis 

3.1.1. Fault Classification Accuracy 

• Proposed method (WASVD + k-NN): achieved a classification accuracy of 99.08%. 

• Existing methods: 

• Traditional wavelet-based methods: typically report accuracy in the range of 95% to 97%. 

• S-transform-based approaches: Often achieve around 96% accuracy. 

• ML Classifiers (e.g., SVM, ANN): Can reach up to 97%-98% under optimal conditions. 

 he  r    ed  e h d’      r  y   r    e   he e  en h  rk ,  r   r  y d e     he enh n ed 

feature extraction capabilities of WA-SVD, which captures the transient components of fault signals 

more effectively. 
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3.1.2. Fault Localization Error 

• Proposed method: achieved an average localization error of 1.2% of the total line length. 

• Existing methods: 

• Distance relay-based techniques: typically exhibit localization errors ranging from 2% to 

5%. 

• Impedance-based methods: Show errors around 3% to 4%. 

The significant reduction in localization error highlights the precision of the proposed method, 

particularly in complex and noisy environments. 

3.1.3. Computational Efficiency 

• Proposed Method: processes fault events with an average time of 0.0764 seconds. 

• Existing methods: 

• Traditional wavelet methods: This may require up to 0.1 to 0.2 seconds per event. 

• S-transform methods: can be computationally intensive, with processing times exceeding 

0.15 seconds. 

• Advanced ML models: depending on the complexity of the model, processing times can 

  ry w de y        en e  eed  he  r    ed  e h d’  e     en y. 

The proposed  e h d’     er  r           n   e     en y       r    ed     he d  en   n    y 

reduction capabilities of SVD, which simplifies the data without losing critical fault information. 

3.1.4. Efficiency and Scalability 

The proposed method not only outperforms existing techniques in terms of accuracy and 

localization precision but also demonstrates scalability to larger networks. The computational 

efficiency makes it suitable for real-time applications, a critical requirement for modern PDSs that 

increasingly integrate PVS and deal with more dynamic operational conditions. 

3.1.5. Analysis of Error Types 

While the overall fault classification accuracy of the proposed method is reported as 99.08%, it 

    r         d   e    h    er  r  n e   r    d   eren         y e        e    he  e h d’  r     ne  . 

Specific fault conditions, such as L-G, L-L-G, and L-L-L faults, pose distinct challenges that can 

impact the accuracy of FD and localization. 

• L-G Faults 

L-G faults are generally easier to detect due to their distinct signature in fault currents. The 

method maintains high accuracy (>99%) in identifying L-G faults, benefitting from the clear transient 

components isolated by Wavelet Analysis. Despite the high accuracy, subtle variations in fault 

inception angle or noise levels can introduce minor errors in the localization, though these are 

typically within the acceptable range (<1.5% localization error). 

• L-L-G Faults 

L-L-G faults present a more complex scenario due to the involvement of multiple phases and 

ground. The accuracy in identifying these faults remains high (~98.5%), but slight inaccuracies can 

occur due to the overlapping of fault signatures from different phases. The presence of noise and the 

proximity of fault signatures from adjacent phases can sometimes lead to misclassification or minor 

errors in fault localization, particularly in unbalanced network conditions. 

• L-L-L Faults 

L-L-L faults are typically the most severe and have a distinct transient signature. The proposed 

method maintains its accuracy (~98.8%) in detecting these faults, aided by the effective feature 
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extraction of high-frequency components through WASVD. However, the complexity of these faults, 

especially in meshed networks, can lead to slightly higher localization errors (up to 2%) due to the 

difficulty in precisely isolating the faulted phases. 

3.1.6. Noise and Uncertainty 

The  e h d’  robustness is generally strong, but high noise levels can degrade the signal-to-

noise ratio, impacting the classification of less distinct faults (e.g., L-L). The average reduction in 

accuracy under noisy conditions is around 0.5%. 

3.2. Technical Details and Limitations 

3.2.1. Computational Complexity 

 h  e  he  e h d’            n   e     en y    n     e,  he   e           n    e     n     n  

matrix operations, particularly during SVD, which can become computationally expensive for very 

large-scale systems. This complexity, while manageable for the test systems used, may pose 

challenges in real-time implementation on larger networks without further optimization. 

3.2.2. Sensitivity to Parameter Selection 

 he  e h d’   er  r  n e     en     e     he   r  e er   h  en   r the wavelet transform and 

the k-NN classifier (e.g., number of neighbours). Suboptimal parameter settings can lead to degraded 

performance, particularly in terms of classification accuracy and localization precision. Identifying 

the optimal parameters requires extensive testing and may not generalize well across different 

network configurations, indicating a need for adaptive parameter selection mechanisms. 

3.2.3. Integration with Existing Systems 

The proposed method requires integration with existing SCADA systems and protection 

schemes, which may involve significant modifications to the current infrastructure. The need for 

precise synchronization of measurement devices is also a technical hurdle that must be addressed to 

ensure accurate fault localization. The practical applicability of the method in legacy systems could 

be limited by these integration challenges, especially in networks where the required level of 

synchronization and data granularity is not readily available. 

3.2.4. Real-World Validation 

While the method has been validated on standard IEEE test systems, real-world validation 

remains limited. Factors such as varying load profiles, non-linearities, and the integration of 

renewable energy sources introduce complexities that have not been fully addressed in the current 

testing framework. The absence of real-world data validation may limit the immediate applicability 

of the method in actual distribution networks. Future work should focus on extensive field trials to 

assess performance under diverse operational conditions. 

3.3. Studied Cases 

3.3.1. Case 1: L-G Occurred Between Bus Number 28 and 29 

The IEEE 33 bus balanced radial DS at the suggested case site is given an L-G fault in this 

scenario. This fault is applied at a time interval ranging from 0.5 S to 0.7 S at the suggested site, and 

the required simulation work is carried out in MATLAB Simulink. The fault voltage signal has been 

logged, and it may be found shown in Fig. 5. The fault current signal is shown in Fig. 6. 

SMs positioned at bus numbers 5, 26, and 30 are responsible for the collection of the data for the 

failure signal. The non-fault signals are gathered at the other measurement devices that are still 

operational. This signal processing approach, which is based on the WA-SVD, is used to deconstruct 

these signals. To solve this categorization issue, we looked at a total of 400 different samples, which 

are denoted by the letter N. The quantity of these gathered data is rather substantial. Within this 

massive data set, only a select few data provide a more accurate interpretation of the signal. The 

process of selecting relevant features from a massive amount of data is referred to as feature 

detection. To limit the amount of data shown here, the chi-square (CS) feature detection approach is 

used. All of the data are compared here with the actual value and the predicted value, and the results 
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showed that the responses are more reliant on the data that had a high CS value. The CS value for 

these particular signals is rather high. Table 3 displays the confusion matrix that is created after the 

k-NN is trained on the data. Decision principles for SC-FD from a fault situation are: 0 < Entropy 

<0.2 = No fault, 0.5 < Entropy < 1.0 = SCF 

According to these decision rules, entropy values falling below 0.2 are healthier signals. The 

entropy values which are above 0.5 are categorized as SCFs. 

  

Fig. 5. Fault voltage at bus 25 Fig. 6. Fault current at bus 25 

Table 3.  Confusion matrix for case 1 

N=400 
Predicted 

Percentage 
 ZA ZB ZC 

Actual 

ZA 129 1 2 

 ZB 1 137 2 

ZC 1 2 125 

    97.75% 

 

Table 3 shows that out of a total of 140 fault signal data, 137 of those data signals are accurately 

predicted and identified as belonging to ZB with an accuracy of 97.85%. It may be said that the 

categorization issue has an accuracy of 97.75% overall. 

3.3.2. Case 2: L-G Occurred Between Bus Number 3 & 23 

The L-L-G fault is imposed in this instance between bus number 3 and bus number 23. This 

fault is applied at a time length ranging from 0.5 S to 0.7 S; the voltage signal that is obtained during 

the fault at bus number 23 as seen in Fig. 7. The signal for the faulty current is seen in Fig. 8. 

  

Fig. 7. Fault voltage at bus 3 Fig. 8. Fault current at bus 3 
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According to Table 4, there are 131 fault signals in total, and out of them, there are 129 signals 

that are projected to be fault signals situated in ZA. The k-NN classifier was trained on the data, and 

it determined that the position of the fault is in ZA with an efficiency of 98.47%. It has been 

determined that the categorization issue has a total efficiency of 98.25%. 

Table 4.  Confusion matrix for case 2 

N=400 
Predicted 

Percentage 
 ZA ZB ZC 

Actual 

ZA  129 1 1 

 ZB 1 138 2 

ZC 1 1 126 

    98.25% 

3.3.3. Case 3: L–L–L Occurred Between Bus Numbers 12 & 13 

In this instance, the L-L-L fault is applied between bus number 12 and bus number 13, and Fig. 

9 depicts the fault voltage signal that is caught at bus number 13 at a time interval ranging from 0.5 

S to 0.7 S. The fault current at bus 12 is shown in Fig. 10. 

  

Fig. 9. Fault voltage at bus 12 Fig. 10. Fault current at bus 12 

The data about the fault signals are gathered at measurement devices that are situated on buses 

number 9, 14, and 17. The total number of data signals that were gathered is 400. These total signals 

are being taught in a classifier that is based on SVMs. Table 4 contains a tabular version of the 

confusion matrix that was created after training using the signal data. According to Table 5, out of 

the total 128 signals data, 127 fault signals have been projected that are situated in ZC. According to 

the zone protection pattern identification that has been suggested, fault signals are projected to belong 

to ZC with an accuracy of 99.21 %. There is a 98.75 % accuracy across the board with the 

categorization challenge.  h      er  n r d  e   n  d  n ed  e h d    y   r  he de e    n, 

             n,  nd            n          n     ,  e er   n     yner            n    n     he    , 

  ,       ,  nd   k            er. 

Table 5.  Confusion matrix for case 3 

N=400 
Predicted 

Percentage 
 ZA ZB ZC 

Actual 

ZA 129 1 1 

 ZB 1 139 1 

ZC 0 1 127 

    98.75% 

3.3.4. Case 4:  Integration of DG and Meshed IEEE 33 Bus 

The backward-forward sweep method is used to do load flow analysis in MATLAB program. 

Convergence occurred with the power flow (PF) issue, and the resulting value was less than 0.001 at 

convergence. The obtained results showed: the voltage on bus number 18 is found to be at a low of 
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0.9136 p.u, and the voltage on bus number 33 is observed to be 0.917 p.u. These buses are considered 

to be weak buses, and DGs may be injected into the system to match the load requirement. The 

fundamental objective function for determining the optimal sizes of DG's is provided in Eq. (17). 

 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑃𝐿 =∑|𝑖𝑖

𝑛

𝑖=1

|2𝑅𝑖 (17) 

Subjected to  

|𝑉𝑖𝑚𝑖𝑛|||𝑉𝑖||𝑉𝑖𝑚𝑎𝑥||||, and |𝐼𝑖,𝑗| ≤ |𝐼𝑖,𝑗𝑚𝑎𝑥||| 

where power loss (PL) occurs, the amount of PL should be kept to a minimum. The current that is 

moving through the ith branch is denoted by Ii, while the resistance of the ith branch is denoted by Ri. 

In this case, it has been determined that IEEE 33 bus is the most suitable place for installing DGs. 

The DG sizing issue is optimized via a method based on SMA. To find a solution to this optimization 

issue, the IEEE 33 bus radial distribution test system is used. After optimization, the DG size and PL 

are determined, and those results are shown in Table 6. 

Table 6.  Sizing of DG to IEEE 33 Bus 

Bus number Voltage profile before DG Voltage profile after DG PL DG size 
33 0.917 0.967 90.3 kW 1.2 MW 

 

In this case, a PV module that has a battery incorporated within it is employed as the source of 

DG. The amount of electricity that is lost is reduced as much as possible, going from 203 kW down 

to 90.3 kW. The deployment of this DG size has resulted in 113 kW worth of overall electricity 

savings. The solar PV system placed at bus 33 has a rating of 1.2 MW [46], whereas the system 

installed at bus 18 has a value of 0.65 kW. Injections of power from these DGs take place at bus 

numbers 18, 25, and 33. Fig. 11 presents the block diagram of the IEEE 33 radial DS with DG. 

 

Fig. 11. Single Line diagram of IEEE 33 bus integrated with DG 

Table 7.  Confusion matrix for case 4 

N=400 
Predicted 

Percentage 
 ZA ZB ZC 

Actual 

ZA  131 1 0 

 ZB 1 137 2 

ZC 1 2 125 

    98.25% 

 

A fault occurred between bus number 31 and bus 32 in the IEEE 33 radial DS with dispersed 

generators linked between bus number 18 and bus 33. A breaker is used to apply the L-G fault at a 
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period between 0.5 and 0.7 seconds. Table 7 shows the confusion matrix for case 4. Table 7 shows 

that 99.25 % of the 131 fault signals in the table belong to ZB. As a whole, the pattern recognition 

task has an overall accuracy of 98.25%. 

3.3.5. Case 5: Meshed Loop IEEE 33 Bus with the Integration of DG 

In this case, a modified IEEE 33 bus is used to evaluate the proposed method. The single-line 

diagram of the meshed loop IEEE 33 unbalanced test DS is shown in Fig. 12. 

 

Fig. 12. Meshed loop improved IEEE 33 bus with DG 

Buses 18, 22, 25, and 33 are modified to incorporate a variety of different sources of generation 

as a result of this demonstration. There are additional compensators for reactive power that can be 

utilized. The DGs are connected by voltage source converters and controlled using the usual droop 

control technique. The radial bus system was formed by stitching together buses 25 and 29, buses 8 

and 21, and buses 12 and 22, and it is illustrated as a dotted line. In this case, the high impedance 

issue is likely to have happened between buses 23 and 25. The SMs that can be found on buses 9, 14, 

and 17 are the ones used to analyse the error signals. The signals that aren't indicative of a problem 

are gathered at additional measuring devices that are strategically placed in appropriate places. The 

WA-SVD is used to deconstruct both the fault signal and the non-fault signals. The features that are 

derived from both signals are then forwarded to the pattern recognition stage. Data on a total of 400 

signals are gathered from a variety of measuring devices that are positioned in the ideal area. Table 

8 contains a tabular version of the confusion matrix for case 5. Table 8 shows that out of the total of 

128 fault signal data, 127 of those data are classified as fault signals and are accurately positioned in 

zone C (99.21 %). The k-NN-based pattern recognition has an accuracy rate of 99.25 % overall. 

Table 8.  Confusion matrix for case 5 

N=400 
Predicted 

Percentage 
 ZA ZB ZC 

Actual 

ZA  130 0 1 

 ZB 1 140 0 

ZC 0 1 127 

    99.25% 

3.3.6. Case 6: Unbalanced Feeder System (with Noise Consideration) 

To verify the suggested technique in this scenario, the IEEE 13 feeder bus imbalanced system 

is taken into consideration [47]. The DS is evaluated using a simple testing technique. This testing 

equipment has a 4.16 kV AC voltage that it operates at. This is a heavily loaded system that also has 

a voltage regulator. Between buses 671 and 692, there is a shunt capacitance that has been installed. 

In the space between bus 633 and bus 634, you'll find an inline transformer. It is a system that is out 

of balance and overly loaded. The single-line diagram of the IEEE 13 bus feeder test system is shown 

in Fig. 13. 
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Fig. 13. Single line diagram of IEEE 13 bus 

The approach that has been suggested is implemented on the IEEE13 bus system. The 

evolutionary algorithm and a technique based on GT are used to divide the zones into distinct parts. 

The Z that has been seen are divided into categories. The following buses are considered to be part 

of Z1: 611, 684, 671, 652, and 680. The measuring instrument for Z1 may be found on bus 684. Z2 

is comprised of the next bus routes: 633, 634, 675, and 692. At bus stops 634 and 675 in Z2, there is 

measuring equipment installed. Z3 is where you'll find buses 646, 645, 632, and 650 clustered 

together. In Z3, there is measurement equipment installed on bus 645, bus 632, and bus 650. It has 

been determined that the LLL short circuit defect is located between bus 611 and bus 684. Each 

measurement instrument contributes to the collection of the defect data. The obtained samples are 

analyzed using signal processing algorithms that are based on WA-SVD at four different levels. 

Following the training of the data using a k-NN-based technique, the confusion matrix is shown in 

Table 9.  

Table 9.  Confusion matrix for case 6 

N=768 
Predicted 

Percentage 
 ZA ZB ZC 

Actual 

ZA 254 1 1 

 ZB 1 254 1 

ZC 2 1 253 

    99.08% 

 

According to the statistics shown in Table 9, 254 of the 256-fault signal (FS) data are classified 

as FSs and are precisely placed in zone A with an accuracy of 99.21 percent. The k-NN method of 

pattern identification has a high overall accuracy of 99.08 percent. The classification task has a 

prediction speed of 27000 observations per second. It is observed that the response time of the 

simulation is around 0.0764 seconds. Noise always corrupts current and voltage signals. Interference, 

sometimes called noise, is unwanted electrical impulses that influence the source signal. In a noisy 

environment, the suggested method for identifying, classifying, and detecting HIF zones was tested. 

The distribution system's noise is consistent throughout the signal's time series [48]. Noise should be 

thoroughly studied to determine the approach's reliability. The signal-to-noise ratio (SNR) signifies 

noise and is represented in Eq. (18). 
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𝑆𝑁𝑅𝑑𝐵 = 20 𝑙𝑜𝑔10 (

𝑋𝑆𝑖𝑔𝑛𝑎𝑙

𝑋𝑁𝑜𝑖𝑠𝑒
) (18) 

In this case, 25 dB and 10 dB SNR high noisy conditions (NCs) are taken into consideration for 

evaluating the proposed method. The fault voltage (FV) with 25 dB and 10 dB SNR NCs is shown 

in Fig. 14 and Fig.15. 

The overall classification accuracy was reduced to 90.25 % for 25 dB NCs and 95.50 % for 10 

dB NCs. Still proposed method accurately classified the fault Z in NCs. The overall performance 

from all six cases is summarized in Table 10. 

  

Fig. 14. FV for case 6 with SNR NCs Fig. 15. FV for case 6 with 10dB SNR NCs 

Table 10.  Overall cases performance analysis 

Case 
DG 

allocation 

Fault 

type 

Actual 

Zone 

Predicted 

Zone 

Fault Zone 

Detection 

Efficiency (%) 

Overall 

efficiency 

(%) 
1 

Without 

DG 

L-G ZB ZB 97.85 97.75 

2 L-L-G ZA ZA 98.47 98.25 

3 L-L-L ZC ZC 99.21 98.75 

4 
With DG 

L-G ZB ZB 99.25 98.25 

5 L-L-L ZC ZC 99.21 99.25 

6 With DG L-L-L ZA ZA 99.21 99.08 

 

In Table 11, the proposed method outperformed all the existing methods in the literature, even 

though Tellegen's theorem and SWT+ANN have 100 % accuracy, WT+k-NN, and WT+DT methods 

have 99.25% accuracy these methods do not consider NCs and also not tested on the non-radial-DS, 

whereas proposed method is tested on DS integrated with DGs. They are limited to FD and no NC is 

considered. 

Table 11.  Performance comparison of the proposed method 

Method Detection Network Noise (dB) Accuracy (%) 
WA-SVD+k-NN 

[Proposed 

Methodology] 

FD, classification, 

and location 

Radial, meshed, 

with DG and RT 

25, 10, 0, 25, 

10 

99.08 (0 dB), 95.50 

(10dB) and90.25(25dB) 

 e  e en’   he re  [49] 
Detection and 

Classification 
IEEE13 & 34 

Not Considered 

(NCD) 
100 

Edge computing [50] Detection Radial NCD - 

WT+SVM FD Radial NCD 97.37 

WT+kNN [51] FD Radial NCD 99.25 

WT+DT [46] FD Radial NCD 99.25 

SWT +ANN [52] Fault Location Radial NCD 100 

PSO+ANN [53] FD RT test feeder NCD 95.50 

Sliding mode observer 

[54] 

FD and 

classification 

parallel multi-cell 

converter 
NCD - 
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4. Conclusions 

This work presents a novel approach for SCF diagnosis and localization in PDSs, integrating 

WA, SVD, and a k-NN classifier. This methodology leverages the strengths of each technique to 

enhance the accuracy and efficiency of fault management in modern PDSs characterized by complex 

topologies and dynamic operational conditions. The suggested approach places measurement devices 

at appropriate locations using the SMA to create a new zone protection strategy. WA proved highly 

effective in isolating fault-related transients, significantly improving the quality of the signal 

preprocessing stage. SVD further enhanced the process by reducing the dimensionality of the data, 

allowing for the extraction of essential features without compromising critical information. The k-

NN classifier successfully utilized these features to diagnose and localize faults with high precision. 

To validate the proposed methodology, extensive tests are conducted on various benchmark systems, 

including the IEEE 33-bus radial DS, the IEEE 33-bus meshed loop unbalanced DS, the IEEE 33-

bus system with integrated PVSs, and the IEEE 13-bus feeder test system. The results demonstrate a 

high fault classification accuracy of 99.08%, with an average localization error of just 1.2% of the 

total line length. The k-NN classifier exhibited a precision of 98.2% and a recall of 99.2%, 

underscoring the reliability and sensitivity of the proposed method. Additionally, the computational 

efficiency of the algorithm is evidenced by an average processing time of 0.0764 seconds per fault 

event, making it well-suited for real-time applications. 
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