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ABSTRACT

The two-energy neutron diffusion model in slab reactors characterizes neu-
tron behavior across two energy groups: fast and thermal. Fast neutrons,
generated by fission, decelerate through collisions, transitioning into ther-
mal neutrons. This model employs diffusion equations to compute neutron
flux distributions and reactor parameters, thereby optimizing reactor design
and safety to ensure efficient neutron utilization and stable, sustained nu-
clear reactions. The primary objective of this research is to explore both an-
alytical and numerical solutions to the two-energy neutron diffusion model
in slab reactors. Specifically, we will utilize the Laplace transform method
for an analytical solution of the two-energy neutron diffusion model. Sub-
sequently, employing the Caputo differentiator, we transform the original
neutron diffusion model into its fractional-order equivalents, yielding the
fractional-order two-energy group neutron diffusion model in slab reactors.
To address the resulting fractional-order system, we develop a novel ap-
proach aimed at reducing the 2β-order system to a β-order system, where
β ∈ (0, 1]. This transformed system is then solved using the Modified Frac-
tional Euler Method (MFEM), an advanced variation of the fractional Euler
method. Finally, we present numerical simulations that validate our results
and demonstrate their applicability.

This is an open access article under the CC-BY-SA license.

1. Introduction
The nuclear reactor’s complex fuel system competition is made up of reflectors, coolants, con-

trol rods, and other parts. The design and analysis of such reactors for various operating procedures
is a complex undertaking that integrates several nuclear engineering disciplines. The distribution of
neutron flux within the reactor core and the estimation of the mass and critical dimension are among
the most crucial, this topic in the past decades has received great interest from the reactor physics
community; for details, see [1]–[5] and the references therein. The nuclear fission reactor’s neu-
tron behaviour is described by the neutron diffusion equation, which is constructed from the neutron
transport equation and simplified using Fick’s law [3]. Therefore, finding a solution to the neutron
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diffusion equation is important for understanding how neutrons behave in nuclear reactors. The ho-
motopy perturbation method (HPM) was used to address the complex neutron diffusion equations [6],
[7].

The neutron diffusion equation is one of the most important PDEs equations for expressing the
behaviour of neutrons in nuclear reactors and a variety of physical applications [8]. In order to op-
erate, nuclear reactors need to achieve criticality-a perfect balance between the production and loss
of neutrons, the steady-state neutron transport equation, when the case is time independent, provides
a mathematical expression for this equilibrium. Nonetheless, simplification is employed to facilitate
practical analysis due to its complexity. As a suitable simplification, Fick’s law establishes a relation-
ship between the neutron flux and the neutron current. By resolving steady state, time-independent,
and neutron diffusion equations, engineers can preserve criticality, guaranteeing a controlled and self-
sustaining chain reaction inside the nuclear reactor; for additional details, see to [8]–[13].

The present research proposes sufficient analytical techniques based on the Laplace Transform
Method (LTM) to offer a general solution for the integer-order two energy group neutron diffusion
model in slab reactor. To do this, the slab radius r would be taken into account as a time domain. The
Laplace Transform Method (LTM) is an effective strategy for solving neutron diffusion equations with
multiple energy groups without the need for linearization, perturbation, or discretization. In addition,
we focused in this research on study neutron diffusion model is transformed into its corresponding
fractional-order equivalents that, producing the so-called fractional-order two energy group neutron
diffusion model in the slab reactors by using the Caputo differentiator and developing a strategy to
reduce a fractional-order system of order 2β into a replicated system of order β, where β ∈ (0, 1],
see [14]–[20] to get a full overview about fractional calculus. Following the transformation of the 2β-
order system into an β-order system, we solve the resulting system applying the Modified Fractional
Euler Method (MFEM), a recent variation and a numerical modification of Fractional Euler Method
(FEM); see [21]. At the end of this study, we present the numerical simulation that confirm our results
and illustrate the applicability of the proposed methods using MATLAB techniques.

2. Preliminaries
This section focuses on presenting the basic definitions and theories related to fractional calculus,

as well as definition and properties of the Laplace transform. However, to get a full overview about
the fractional calculus and its applications, the reader may refer tho the references [22]–[56].

Definition 1 [57], [58] The Riemann-Liouville fractional integral of a function g : [0, b] → R of
order β ∈ R+ is given by:

Jβg(x) =
1

Γ(β)

∫ x

0
(x− t)β−1g(t)dt, x ∈ [0, b], (1)

With Γ(β) =
∫∞
0 e−ttβ−1dt.

The following are some properties of the Riemann-Liouville integral [57], [59]:

1. J0g(x) = g(x).
2. Jαxβ = Γ(β+1)

Γ(α+β+1)x
α+β, α ≥ 0, β ≥ −1,

3. JαJβg(x) = JβJαg(x), α, β ≥ 0.
4. JαJβg(x) = Jα+βg(x), α, β ≥ 0.

Definition 2 [57], [58] Let ∈ Cn([0, b]) and n−1 < β ≤ n such that n ∈ N∗. The Caputo fractional
derivative of order β is defined by:

cDβg(x) = Jn−βDng(x),=
1

Γ(n− β)

∫ x

0
(x− t)n−β−1g(n)(t)dt. (2)

Some properties of The Caputo fractional derivative are as follows [58], [59]:
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1. cDβa = 0, a ∈ R.
2. cDαxβ = Γ(β+1)

Γ(β−α+1)(t− a)β−α, α ≥ 0, β > −1.
3. cDα is a linear operator, i.e., for β ≥ 0 and γ, λ ∈ R, we have

cDβ(γg(x) + λh(x)) = γcDαg(x) + λcDαh(x).

4. For n− 1 < β ≤ n, n ∈ N, we have:

Jβ cDβg(x) = g(x)−
n∑

i=1

xi

i!
f i(0), x > 0.

Theorem 1 [60] (Generalized Taylor’s Theorem) Assume that cDjβg(x) ∈ C(0, b], where β ∈
(0, 1] and j = 0, 1, 2, · · · , n+ 1. Then, we can do the following to extend the function g concerning
the node x0:

g(x) =

n∑
i=0

(x− x0)
iβ

Γ(iβ + 1)

c

Diβg(x0) +
(x− x0)

(n+1)β

Γ((n+ 1)β + 1)

c

D(n+1)βg(ξ), (3)

∀x ∈ (0, b] with ξ ∈ (0, x).

Definition 3 [61] Let function f be defined on [0,∞). Then, the Laplace transform L {g} is another
function G(x), which can be defined as:

G(s) = L {g} :=

∫ ∞

0
e−sxg(x)dx. (4)

The Laplace transform has some of the following properties [61]:

1. L {xy} = − d
dsL {y}.

2. L {g′(x)} = −g(0) + sL {g} = sG(s)− g(0).
3. L {g′′(x)} = s2G(s)− sg(0)− g′(0).

Now, we want to give a brief description of MFEM and show how it can be applied to solve the
following initial value problems (for more details, see [21]):

cDβy(t) = g(t, y(t)), 0 < β ≤ 1,

y(0) = y0.
(5)

In order to accomplish this, we suppose that 0 = t0 < t1 = t0 + h < t2 = t0 + 2h < · · · <
tn = t0 + nh = b where the mesh points are ti = t0 + ih, i = 1, 2, . . . , n, with the step size h = b

n .
Thus, by using Theorem 1’s first three terms and making a few replacements, we get:

u0 = y0, ui+1 = ui +
hβ

Γ(β + 1)
g

(
ti +

hβ

2Γ(β + 1)
, ui +

hβ

2Γ(β + 1)
g(ti, ui)

)
, (6)

Where ui represents the numerical solution of problem (5), for i = 1, 2, · · · , n− 1.

3. Two Energy Groups of Neutron Slab Reactor
In this section, we first want to treat the integer-order two energy group neutron diffusion model

in slab reactors via LTM, and then this model will be addressed using MFEM in its fractional-order
case.
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3.1. Integer-Order Model
In this part, we will solve the integer-order two energy group neutron diffusion model in slab

reactors using Laplace transform Method (LTM) and allowing the slap radius r to be a time domain.
It is assumed for this reason that the integer-order two energy group neutron diffusion system have a
single solution in the integration interval [1], [3], having the following form:{

∇2θ1(r) + C11θ1(r) + C12θ2(r) = 0,
∇2θ2(r) + C21θ1(r) + C22θ2(r) = 0,

(7)

Where Cii is referred to as a group buckling and Cij is a constant connection between fluxes in various
energy groups of neutrons. Specifically, each of these constants can be defined by:

Cii =
xiνi

∑
fi −(

∑
γi +

∑∑
sij)

Di
, Cij =

∑∑
sij +xiνj

∑
fi

Di
, Di =

1

3(
∑

fi +
∑

sii +
∑∑

sij +
∑

γi)
. (8)

Equation (8) has determined the constants in terms of different macroscopic cross-sections, the
number of neutrons generated by each fission for every group (νi), and the fraction of fission neutrons
released with energies in the ith-group (xi). Actually, system (7) describes how neutrons behave in
nuclear reactors, where each θi represents the neutron flux at a certain speed. Every flux reaches
its maximum in the reactor’s centre, its derivative disappears. Thus, the initial conditions could be
written as:

θi(0) = hi, θ′i(0) = 0, i = 1, 2, (9)

Where hi ∈ R and the fluxes θi(r) are functions of independent variable r, for i = 1, 2. Throughout
it is assumed that θi(r) are analytic functions for r ≥ 0 and i = 1, 2.

In the content that follows, we solve two energy group neutron diffusion model in slab reactors
by applying LTM and permitting the slab radius r be a time domain. To achieve this, let’s go over the
following information:

∇2 =
∂2

∂r2
+

∂

∂r
. (10)

As a result, system (7) can be reformulated as:{
θ′′1(r) + C11θ1(r) + C12θ2(r) = 0,
θ′′2(r) + C21θ1(r) + C22θ2(r) = 0,

(11)

With the initial conditions: {
θi(0) = ai, i = 1, 2,
θ′i(0) = bi, i = 1, 2.

(12)

Applying the Laplace transform method (LTM) to both sides of (11), we find:{
L (θ′′1(r)) + C11L (θ1(r)) + C12L (θ2(r)) = 0,
L (θ′′2(r)) + C21L (θ1(r)) + C22L (θ2(r)) = 0,

(13)

Utilising the Laplace transform’s properties, we can have

s2L {θ1(r)} − sθ1(0)− θ′1(0) + C11L {θ1(r)}
+ C12L {θ2(r) = 0,

s2L {θ2(r)} − sθ2(0)− θ′2(0) + C21L {θ1(r)}
+ C22L {θ2(r)} = 0.

(14)
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By through supposing L {θi(r)}) = Gi(s), for any i = 1, 2, we get:{
s2G1(s)− a1s− b1 + C11G1(s) + C12G2(s) = 0,
s2G2(s)− a2s− b2 + C21G1(s) + C22G2(s) = 0.

(15)

Thus, system (15) simplification yields:{
(s2 + C11)G1(s) + C12G2(s) = a1s+ b1,
C21G1(s) + (s2 + C22)G2(s) = a2s+ b2.

(16)

The system mentioned above can be represented in the matrix of the form:[
s2 + C11 C12

C21 s2 + C22

] [
G1(s)
G2(s)

]
=

[
a1
a2

]
s+

[
b1
b2

]
, (17)

or
M(s)G(s) = As+B, (18)

With

M(s) =

[
−s2 + C11 C12

C21 s2 + C22

]
, G(s) =

[
G1(s)
G2(s)

]
, (19)

and

A =

[
a1
a2

]
, B =

[
b1
b2

]
. (20)

So, if we assume that M(s) is invertible, we can obtain:

G(s) = M−1(s) (As+B) . (21)

With a prepared MATLAB code and the knowledge that θi(r) = L −1{Gi(s)} for all i = 1, 2, system
(21) may therefore be solved numerically. This would give the solution θi(r) of system (11).

3.2. Fractional-Order Model

{
cD2βθ1(r) + C11θ1(r) + C12θ2(r) = 0,
cD2βθ2(r) + C21θ1(r) + C22θ2(r) = 0,

(22)

With the following initial conditions:{
θi(0) = ai, i = 1, 2,
θ′i(0) = bi, i = 1, 2.

(23)

It is clear that system (22) is of order 2β. For this reason, we need to develop a manner that can
deal with such a system with such a fractional-order. To do so, we introduce the following lemma that
aims to reduce the system of 2β-order into another duplicated system of β-order, where 0 < β ≤ 1.

Lemma 1 For any fractional differential equations of order nβ, n ∈ Z+ and 0 < β ≤ 1, with
functions possessing values in R can be transformed into a system of fractional differential equations
of order β with values in Rnd.

Proof 1 In order to demonstrate this result, we first have to consider the scaler case that takes place
whenever d = 1, and then we’ll think about the last case that holds when d > 1. Because of this,
we should be aware that in its scaler case, the general form of the fractional differential equations of
fractional-order nβ can be provided by:

cDnβy(t) = F (t, y(t),cDβy(t),cD2βy(t), · · · ,cD(n−1)βy(t)) (24)

Iqbal M. Batiha (Fractional Approach to Two-Group Neutron Diffusion in Slab Reactors)
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Where F is a continuous function defined on the subset I × R× R× · · · × R, so that it takes values
in R for a given intend I . Now, we define:

Ψ(t, v0, v1, · · · , vn−1) = (v1, v2, · · · , F (t, v0, v1, · · · , vn−1)) (25)

as a continuous function on I ×R×R× · · · ×R as F , but it takes the values in Rn. Regarding this,
we take into consideration the following formula:

cDβY(t) = Ψ(t,Y(t)), for t ∈ I. (26)

Next, we wish to prove that x : I → R is a solution of equation (25) if and only if the function

X :I → Rn,

t → (x(t),cDβx(t),cD2βx(t), · · · ,cD(n−1)βx(t)).
(27)

In order to achieve this, we suppose that X is a solution to equation (25) such that X is defined above.
Then we have:

cDβX(t) =


cDβx(t)
cD2βx(t)

...
cD(n−1)βx(t)

cDnβx(t)



=


cDβx(t)
cD2βx(t)

...
cD(n−1)βx(t)

F (t, x(t),cDβx(t),cD2βx(t), · · · ,cD(n−1)βx(t))


= Ψ(t,X(t)).

(28)

Herein, the converse of the above discussion is similar. Now, for the case of d > 1, the above proof
can be re-read again, replacing each occurrence of R with Rd to obtain the desired result.

Considering Lemma 1, we transform system (22), which is of order 2β, into the equivalent
fractional system of order β, where 0 < β ≤ 1 . In order to accomplish this, we can be rewrite
system (22) as follow: 

cD2βθ1(r) = −
(
C11θ1(r) + C12θ2(r)

)
,

cD2βθ2(r) = −
(
C21θ1(r) + C22θ2(r)

)
,

(29)

Now, we consider the following hypotheses:

g1
(
r, θ1(r),

cDβθ1(r), θ2(r),
cDβθ2(r)

)
= −

(
C11θ1(r) + C12θ2(r)

)
,

g2
(
r, θ1(r),

cDβθ1(r), θ2(r),
cDβθ2(r)

)
= −

(
C21θ1(r) + C22θ2(r)

)
.

(30)

Next, system (30) converts into:

cD2βθ1(r) = g1

(
r, θ1(r),

cDβθ1(r), θ2(r),
cDβθ2(r)

)
,

cD2βθ2(r) = g2

(
r, θ1(r),

cDβθ1(r), θ2(r),
cDβθ2(r)

)
.

(31)
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Let vi(r) =c Dβθi(r) for i = 1, 2. Then we get

cDβθ1(r) = v1(r) = f1 (r, θ1(r), v1(r), θ2(r), v2(r)) ,
cDβv1(r) =

c D2βθ1(r) = g1 (r, θ1(r), v1(r), θ2(r), v2(r)) ,
cDβθ2(r) = v2(r) = f2 (r, θ1(r), v1(r), θ2(r), v2(r)) ,
cDβv2(r) =

c D2βθ2(r) = g2 (r, θ1(r), v1(r), θ2(r), v2(r)) ,

(32)

With the initial conditions:

θi(0) = ai, vi(0) = bi, for i = 1, 2. (33)

In the following, we want here to take the slab radius r into consideration as a time domain.
Consequently, to solve the transformed system (32) using MFEM [21], we subdivide the interval I =
[0, b] as 0 = r0 < r1 = r0+h < r2 = r0+2h < · · · < rn = r0+nh = b such that ri = r0+ ih and
h = b

n , for i = 1, 2. To keep things simple, we indicate respectively fi(r, θ1(r), v1(r), θ2(r), v2(r))
and gi(r, θ1(r), v1(r), θ2(r), v2(r)) by fi(Ω) and gi(Ω), where Ω = (r, θ1(r), v1(r), θ2(r), v2(r)),
for i = 1, 2. The following states can now be obtained applying the MFEM’s main formula (6):

θ1(ri+1) = θ1(ri) +
hβ

Γ(β + 1)
f1

(
ri +

hβ

2Γ(β + 1)
,

θ1(ri) +
hβ

2Γ(β + 1)
f1(Ω), θ2(ri) +

hβ

2Γ(β + 1)
f2(Ω),

v1(ri) +
hβ

2Γ(β + 1)
g1(Ω), v2(ri) +

hβ

2Γ(β + 1)
g2(Ω)

)
,

v1(ri+1) = v1(ri) +
hβ

Γ(β + 1)
g1

(
ri +

hβ

2Γ(β + 1)
,

θ1(ri) +
hβ

2Γ(β + 1)
f1(Ω), θ2(ri) +

hβ

2Γ(β + 1)
f2(Ω),

v1(ri) +
hβ

2Γ(β + 1)
g1(Ω), v2(ri) +

hβ

2Γ(β + 1)
g2(Ω)

)
,

θ2(ri+1) = θ2(ri) +
hβ

Γ(β + 1)
f2

(
ri +

hβ

2Γ(β + 1)
,

θ1(ri) +
hβ

2Γ(β + 1)
f1(Ω), θ2(ri) +

hβ

2Γ(β + 1)
f2(Ω),

v1(ri) +
hβ

2Γ(β + 1)
g1(Ω), v2(ri) +

hβ

2Γ(β + 1)
g2(Ω)

)
,

v2(ri+1) = v2(ri) +
hβ

Γ(β + 1)
g2

(
ri +

hβ

2Γ(β + 1)
,

θ1(ri) +
hβ

2Γ(β + 1)
f1(Ω), θ2(ri) +

hβ

2Γ(β + 1)
f2(Ω),

v1(ri) +
hβ

2Γ(β + 1)
g1(Ω), v2(ri) +

hβ

2Γ(β + 1)
g2(Ω)

)
,

(34)

for i = 1, 2. In actuality, system (34) represents an approximation solution of system (32), and as a
result, the approximation solution of system (22) is represented by (θ1(t), θ2(t)).
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4. Numerical Simulations
This section aims to examine the effects of boundary conditions on the numerical results of slap

reactor simulations, namely the extrapolated boundary condition and the zero flux boundary condi-
tion. We compare the results generated by different boundary conditions in an attempt to discover
the impact these choices have on the reliability and precision of the simulation results. In the fol-
lowing, we use the LTM and MFEM, respectively, to explain and illustrate the numerical solutions
of the integer- and fractional-order two energy group neutron diffusion model in slab reactors. For
this reason, we list in the following values of the parameters in Table 1 and Table 2 obtained from the
reference [62].

Table 1. Two energy group data

Fast Energy Group∑
f1

= 0.0010484cm−1 ∑
γ1

= 0.0010046cm−1 ∑
S11 = 0.62568cm−1∑

S12 = 0.029227cm−1 v1 = 2.5 χ1 = 1.0

Thermal Energy Group∑
f2

= 0.05063cm−1 ∑
γ2

= 0.025788cm−1 ∑
S22 = 2.443838cm−1∑

S21 = 0.00000cm−1 v2 = 2.5 χ2 = 0.0

Table 2. The values of the coefficients Cij are calculated from equation (8)

Cij i = 1 j = 2

i = 1 -0.0564834 0.220978
j = 2 0.249474 -0.577793

The two-energy group of neutrons reactors diffusions system related to the slab reactor can be
rewritten in its classical case as:{

θ′′1(r) + C11θ1(r) + C12θ2(r) = 0,
θ′′2(r) + C21θ1(r) + C22θ2(r) = 0,

(35)

With the following initial conditions:

θ1(0) = 2.766976, θ2(0) = 1, θ′1(0) = 1, θ′2(0) = 0. (36)

On the other hand, the fractional order of the two-energy groups of neutrons reactors diffusions system
related to the slab reactor can be rewritten in the following form:{

cD2βθ1(r) + C11θ1(r) + C12θ2(r) = 0,
cD2βθ2(r) + C21θ1(r) + C22θ2(r) = 0,

(37)

With the following initial conditions:

θ1(0) = 2.766976, θ2(0) = 1, cDβθ1(0) = 0, cDβθ2(0) = 0. (38)

Now, in order to confirm that the fractionalization technique implemented by Lemma 1, we
present a numerical comparison in Fig. 1 between the MFEM’s solution of system (22) and the
LTM’s solution of system (11). Given that figure, it is evident to see that the two solutions perfectly
correspond. Consequently, using MATLAB, the two energy groups of the neutron reactor diffusion
model is effectively simulated when β = 1.
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Fig. 1. LTM and MFEM solutions for two-energy groups of neutrons reactors diffusions system

We plot in Fig. 2 and Fig. 3 respectively the numerical solutions for θ1(r) and θ2(r) which are
performed by MFEM’s according to different values of β.
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Fig. 3. MFEM’s numerical solutions for θ2(r) according to different values of β

In Fig. 4 and Fig. 5, we present respectively two numerical comparisons for θ1(r) and θ2(r),
which are carried between LTM’s solutions and several MFEM’s solutions according to different
values of β.

Iqbal M. Batiha (Fractional Approach to Two-Group Neutron Diffusion in Slab Reactors)



620 International Journal of Robotics and Control Systems
Vol. 5, No. 1, 2025, pp. 611–624

ISSN 2775-2658

0 1 2 3 4 5 6 7 8 9 10

r

-3

-2

-1

0

1

2

3

1
(r

)

Comparisons between MFEM and exact solutions for =0.95,0.975,1

MFEM solution for =0.95

MFEM solution for =0.975

MFEM solution for =1

Exact solution for =1

Fig. 4. LTM’s and MFEM’s solutions for θ1(r) when β = 0.95, 0.975, 1

0 1 2 3 4 5 6 7 8 9

r

-0.5

0

0.5

1

2
(r

)

Comparisons between MFEM and exact solutions for =0.95,0.975,1

MFEM solution for =0.95

MFEM solution for =0.975

MFEM solution for =1

Exact solution for =1

Fig. 5. LTM’s and MFEM’s solutions for θ2(r) when β = 0.95, 0.975, 1

5. Conclusion
In this research, we have successfully proposed two effective approaches to solve the integer-

order and fractional-order two-energy group neutron diffusion models in slab reactors. The Laplace
transform approach was employed to handle the integer-order model, demonstrating its capability
in providing precise analytical solutions. Concurrently, the modified fractional Euler method was
utilized to address the fractional-order model, showcasing its robustness in dealing with the complex-
ities introduced by fractional calculus. Our results have been validated through extensive numerical
comparisons, confirming the accuracy and effectiveness of both methods.

The findings of this study not only contribute to the existing body of knowledge in neutron
diffusion modeling but also open up several avenues for future research. One potential direction is
the exploration of other fractional-order numerical methods, such as the fractional Adams-Bashforth-
Moulton method, which could offer improved accuracy or computational efficiency. Additionally,
extending the analysis to more complex reactor geometries, such as cylindrical or spherical reactors,
would be valuable in understanding the applicability and limitations of these methods in different
contexts.

Another important area for future investigation is the impact of varying boundary conditions,
such as reflective or periodic boundaries, on the performance of the proposed methods. Such studies
could provide deeper insights into the stability and convergence properties of the solutions under
different physical scenarios. Furthermore, the integration of stochastic elements into the fractional-
order models could be explored to better simulate the inherent uncertainties in reactor behavior.
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Finally, future work could focus on the practical implementation of these methods in real-world
reactor design and safety analysis. This includes the development of more sophisticated computa-
tional tools that can handle large-scale simulations, as well as collaborations with industry to apply
these models in operational settings. By addressing these future challenges, we aim to further refine
and expand the applicability of our approaches, ultimately contributing to the advancement of neutron
diffusion modeling in nuclear engineering.
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