
IJRCS
International Journal of Robotics and Control Systems

Vol. 4, No. 3, 2024, pp. 1186-1206

ISSN 2775-2658

http://pubs2.ascee.org/index.php/ijrcs

 http://dx.doi.org/10.31763/ijrcs.v4i3.1483 ijrcs@ascee.org

Simulation and Arduino Hardware Implementation of ACO,

PSO, and FPA Optimization Algorithms for Speed Control of a

DC Motor

Adil Najem a,1,*, Ahmed Moutabir a,2, Abderrahmane Ouchatti a,3

a G.E.I.T.I.I.L laboratory, Aïn chok Faculty of Sciences Casablanca, Hassan 2nd University, Morocco
1 adilnajem2@gmail.com; 2 a.moutabir65@gmail.com; 3 ouchatti_a@yahoo.fr

* Corresponding Author

1. Introduction

The PID controller remains one of the most widespread and effective tools in the field of

automation and control of dynamic systems [1], [2]. Its popularity endures due to its simple design,

ease of implementation, and ability to provide robust control performance across a wide range of

applications such as : Variable Speed Pumping Systems [3], robotic arm [4], Magnetic Levitation

System [5], [6], Converter [7], [8], Inverted Pendulum [9], Quadcopter [10], [11]. When estimating

PID controller coefficients, two main approaches are commonly used:

ARTICLE INFO ABSTRACT

Article history

Received May 14, 2024

Revised June 29, 2024

Accepted July 07, 2024

 This article proposes implementing and comparing the effectiveness of

three optimization algorithms (ACO, PSO, and FPA) for tuning a

proportional-integral-derivative (PID) controller on an Arduino Mega 2560

board. This relatively unexplored approach aims to evaluate these

algorithms through practical experiments. The choice of PID control is due

to its design simplicity and widespread industrial use. Similarly, the

permanent magnet DC motor (PMDC) was selected because of its crucial

role in various industrial sectors. Tuning PID parameters using

optimization algorithms has garnered increasing interest due to its

demonstrated efficiency. Several studies have validated the stability of

ACO, PSO, and FPA algorithms, justifying their selection. In this article,

simulation results showed that ACO, with a response time of 0.322s and an

overshoot of 0.68%, was more effective than PSO, which had a response

time of 0.768s and an overshoot of 13%. FPA had a response time of

0.347s, close to ACO, but a higher overshoot of 6%. In practice, several

factors come into play, such as speed ripples caused by the speed sensor,

and machine saturation, which must be considered to ensure practical

implementation. After adjusting the PID parameters and integrating a low-

pass filter in the feedback loop, ACO, with a response time of 0.596s and

an overshoot of 1.68%, was very close to FPA, which had a response time

of 0.644s and an overshoot of 0.81%. This comparison highlighted the

advantages of the FPA algorithm, which is simple to use, requires fewer

parameters to adjust, and takes less time than ACO. This study suggests the

potential for implementing a hybrid FPA-ACO algorithm, leveraging the

strengths of both algorithms.

Keywords

Ant Colony Optimization;
Particle Swarm
Optimization;
Flower Pollination
Algorithm;
PID Controller

This is an open-access article under the CC–BY-SA license.

http://pubs2.ascee.org/index.php/ijrcs
http://dx.doi.org/10.31763/ijrcs.v4i3.1483
mailto:ijrcs@ascee.org
mailto:adilnajem2@gmail.com
mailto:a.moutabir65@gmail.com
mailto:ouchatti_a@yahoo.fr
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

ISSN 2775-2658
International Journal of Robotics and Control Systems

1187
Vol. 4, No. 3, 2024, pp. 1186-1206

Adil Najem (Simulation and Arduino Hardware Implementation of ACO, PSO, and FPA Optimization Algorithms for

Speed Control of a DC Motor)

• Trial and Error Method: This involves manual adjustments of coefficients, which can be time-

consuming and prone to human error, and does not always guarantee an optimal solution [12],

[13].

• Optimization Algorithms: These algorithms aim to minimize a cost function that measures the

difference between the system response and the desired behavior by progressively adjusting the

PID coefficients using mathematical techniques [14]-[16]. They offer the advantage of

converging towards an optimal solution, especially for complex or nonlinear systems, and can

be automated to save time and resources. However, they require accurate system modeling, and

the choice of algorithm can impact solution quality.

Recent research has explored a number of optimization algorithms for adjusting PID controller

parameters such as Artificial Bee Colony Algorithm(ABC) [17], [18], Flower Pollination Algorithm

(FPA) [19], [20], Sine Cosine Algorithm (SCA) [21], Grey Wolf Optimizer (GWO) [22], [23],

Genetic Algorithm (GA) [24], Water Wave Optimization (WWO) [25], Firefly Algorithm(FA) [26],

[27], Bat Algorithm (BA) [28], [29], Harris Hawk Optimization (HHA) [30], [31], Ant Colony

Optimization(ACO) [32], [33], Particle Swarm Optimization (PSO) [34], [35], Reinforcement

Learning (RL) [36], [37]. In addition, this article [38] presents a synthesis of the algorithms used for

controlling DC motors via PID controllers, along with recent publications in renowned journals

addressing this subject. The article explores various methods of optimizing the control of DC motors,

focusing on the use of PID controllers.

Given the variety of optimization algorithms, comparing these algorithms is essential for several

reasons. First, it allows evaluating their efficiency and performance, as different algorithms may

converge to different solutions in terms of speed and quality [39]. Second, it considers how sensitive

these algorithms are to specific system characteristics, such as nonlinearities or constraints, to choose

the most suitable one. Additionally, it assesses algorithm robustness, i.e., their ability to provide

quality solutions under various problem conditions and configurations. Finally, it takes into account

computational complexity by evaluating computation time and required resources to strike a balance

between accuracy and efficiency [40].

 Several studies have compared these approaches, including GA_ACO_PSO [41], ABC,

Bat_GWO_PSO [42], GA_ABC_PSO [43]. Further research has confirmed the stability of the results

obtained by the ACO, PSO, and FPA algorithms compared to other methods. To confirm the stability

of these algorithms and justify our choice, we propose to give the most important comparisons:

FPA, in particular, is inspired by the natural process of flower pollination, using biological

concepts to solve optimization problems. This allows for the effective modeling of solutions for

complex systems. FPA effectively balances exploration (global search) and exploitation (local

search), which is crucial for avoiding local minima and converging to optimal solutions.

Additionally, FPA is flexible and can be applied to a wide range of optimization problems. In

comparison with other algorithms:

• Genetic Algorithms (GA) [44] are powerful but can be slow and suffer from premature

convergence. FPA, with its unique pollination mechanism, often overcomes these limitations.

PSO is easy to understand and implement, requiring fewer parameters to adjust compared to

other algorithms like GA. It is known for its rapid convergence, especially in problems where the

objective function is relatively smooth. PSO is inspired by the social behavior of birds, where each

particle adjusts its position based on its own experience and that of other particles, facilitating the

discovery of optimal solutions. PSO is robust and can effectively handle multi-dimensional and

nonlinear problems. In comparison with other algorithms:

• Differential Evolution (DE) [45] is powerful but can take more time to converge. PSO tends to

converge faster with fewer parameters to adjust.

1188
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 4, No. 3, 2024, pp. 1186-1206

Adil Najem (Simulation and Arduino Hardware Implementation of ACO, PSO, and FPA Optimization Algorithms for

Speed Control of a DC Motor)

• Artificial Bee Colony (ABC) [46], inspired by the behavior of bees, is often more complex to

implement than PSO, which is easier to adapt due to its simple particle dynamics.

ACO is capable of finding optimal solutions in vast and complex search spaces by effectively

exploiting the best solutions found so far. It can be easily adapted to various constraints and specific

objectives, making it useful for a variety of industrial and research problems. In comparison with

other algorithms:

• GA can sometimes struggle to find optimal solutions for combinatorial problems due to the

stochastic nature of crossover and mutation, whereas ACO is often better suited [47].

• Bacterial Foraging Optimization (BFO) [48] is powerful but can be complex to implement and

adjust. ACO, with its mechanisms of pheromone deposition and evaporation, is often more

intuitive and direct for pathfinding problems.

The choice of FPA, PSO, and ACO algorithms for a comparative study on Arduino is justified

by their unique and complementary characteristics:

• FPA: Offers an excellent balance between exploration and exploitation, with high adaptability

for various optimization problems.

• PSO: Known for its simplicity and rapid convergence, particularly effective for continuous and

nonlinear problems.

• ACO: Particularly suited for combinatorial and discrete optimization problems, with effective

reinforcement mechanisms.

These three algorithms provide a broad and robust coverage of optimization problem types,

allowing for an exhaustive and relevant comparison in various industrial and academic contexts. To

this end, we plan to implement a PID controller whose coefficients will be optimized by the FPA

algorithm, using an Arduino Mega 2560 board. Subsequently, we will compare the performances of

the three algorithms (ACO, PSO, and FPA) based on experimental results applied to PMDC. This

approach, still relatively unexplored on hardware controlling a PMDC, is relevant.

Despite the emergence of newer technologies such as induction AC motors and stepper motors,

PMDC motors retain an important role in many industrial and commercial sectors [49]-[51]. Indeed,

PMDC motors are particularly useful for conveyor systems, industrial robots, and machine tools

requiring variable speeds and precise movements, while enabling precise torque control [52], [53].

Thus, the results of simulations and experiments can be more easily applied to real industrial

scenarios, such as robotic arms used in assembly, welding, or other repetitive tasks. Arduino controls

the PMDC motors responsible for the articulated movements of the robot.

The PID controller, optimized by the optimization algorithm, ensures smooth and precise

movements by correcting position and speed errors in real-time. This process aims to improve the

accuracy and repeatability of the tasks performed by the robot, thereby increasing the quality and

speed of production. PID controllers are used in a wide range of industrial applications, making this

study a solid foundation for understanding and improving the performance of practical control

systems. Indeed, the use of PID controllers and PMDC motors in a simulation study on Arduino to

compare the ACO, PSO, and FPA algorithms is justified by their simplicity, availability, and

representativeness of real industrial systems. PMDC motors, in particular, offer considerable

advantages in terms of precise control, reduced maintenance, and quick response, making them ideal

for a multitude of industrial and experimental applications. To successfully complete this

experimental section, Section 2 of the article, which corresponds to the methodology used, first

describes the ACO, PSO, and FPA optimization algorithms to provide a clear understanding of these

algorithms. Next, it outlines the basic principles for implementing these algorithms and controlling

a PMDC motor through the L298n driver on an Arduino Mega 2560 board. The following step

involves using MATLAB/Simulink for identifying the transfer function of the PMDC motor.

ISSN 2775-2658
International Journal of Robotics and Control Systems

1189
Vol. 4, No. 3, 2024, pp. 1186-1206

Adil Najem (Simulation and Arduino Hardware Implementation of ACO, PSO, and FPA Optimization Algorithms for

Speed Control of a DC Motor)

To better understand the other sections and the importance of these algorithms in the control of

PMDC motors, our article highlights their utility by organizing our work into four sections: Section

2 describes the methods used, Section 3 simulates the algorithms with MATLAB/Simulink, Section

3 implements the algorithms on Arduino Mega, and Section 4 presents the conclusion of our study.

2. Method

 Ant Colony Optimizations

[32] ACO is an optimization algorithm based on the behavior of ants searching for optimal paths

between their colony and a food source. Inspired by real ant behavior, ACO uses an iterative process

where artificial ants deposit "pheromones" along explored paths. Paths with stronger pheromones

become more attractive to other ants, promoting the exploration of promising solutions. Over time,

this algorithm converges towards optimal or near-optimal solutions.

For an ant k located at node i, the probability of choosing to move towards another node in the

network is given by the following relationship:

𝑃𝑖𝑗
𝑘 {

(𝜏𝑖𝑗
𝑘)𝛼 (𝜂𝑖𝑗

𝑘)𝛽

∑ (𝜏𝑖𝑙
𝑘)𝛼

𝑙𝜖𝑁𝑖
𝑘 (𝜂𝑖𝑙

𝑘)𝛽

0

𝑖𝑓 𝑗𝜖𝑁𝑖

𝑘

𝑖𝑓 𝑗 ∉ 𝑁𝑖
𝑘 (1)

Where 𝜏𝑖𝑗
𝑘 represents the pheromone levels for ant k at node 𝑖, where the denominator is a summation

to encompass all potential paths, with 𝑁𝑖
𝑘denoting the set of possible trails for ant 𝑘 when located at

node 𝑖.

Parameters 𝛼 and 𝛽 influence the pheromone evaporation process and the behavior of ants.

Specifically, 𝛼 regulates the significance of pheromone quantity in ant decision-making for their

subsequent steps. Conversely, 𝛽 governs the importance of heuristic information in the decision-

making process. A higher 𝛼 accentuates the impact of pheromone quantity, while a higher β

emphasizes the significance of heuristic information. Conversely, lower α values reduce the influence

of pheromone, promoting exploration of new paths, whereas lower 𝛽 values increase reliance on

heuristic information.

The selection of 𝛼 and 𝛽 is contingent upon the desired convergence speed of ants toward an

optimal solution. These values aim to strike a balance between exploration (seeking new paths) and

exploitation (utilizing known information).

 𝜏𝑖𝑗 ⃪(1 − 𝜌)𝜏𝑖𝑗 𝑎𝑣𝑒𝑐 0≤𝜌≤1 (2)

Where 𝜂𝑖𝑗
𝑘 heuristic information (visibility), 𝜌 is the percentage of pheromone vaporization

(evaporate rate). When ants traverse a path, the pheromone levels are updated as follows:

𝜏𝑦 ⃪𝜏𝑦 + ∑ ∆𝜏𝑦

𝑘

𝑚

𝑘=1

 (3)

With

 ∆𝜏𝑖𝑗

𝑘 =
1

𝐶𝑘 (4)

The reward for ant k is linked to 𝐶𝑘 for choosing this path.

The optimal selection of Ki, KP and Kd ensures that the objective function ITAE (Integral of

Time-weighted Absolute Error) is minimized:

1190
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 4, No. 3, 2024, pp. 1186-1206

Adil Najem (Simulation and Arduino Hardware Implementation of ACO, PSO, and FPA Optimization Algorithms for

Speed Control of a DC Motor)

𝐼𝑇𝐴𝐸 = ∫ 𝑡|𝑒|𝑑𝑡

𝑡

0

 (5)

Where 𝜁 is a parameter introduced to reinforce pheromone levels as ants approach optimal solutions.

To use ACO, we must proceed with the following steps:

• Step 1: Define a search space that includes the possible solutions for the optimization parameters

Ki, KP and Kd.

• Step 2: Initialize the number of ants and iterations, and set all discrete values in the search space

to the same initial pheromone value 𝜏.

• Step 3: Calculate the probability (1). Choose 𝛼 and β; in our case, 𝛼 = 1 and 𝛽 = 0 provide a

good balance between exploration and exploitation.

• Step 4: For each ant, determine Ki, KP and Kd for this we must identify the best value 𝑓𝑏𝑒𝑠𝑡 the

worst value 𝑓𝑤𝑜𝑟𝑠𝑡 based on the objective function ITAE.

• Step 5: Repeat the same procedure for several iterations

Pheromone should be added for 𝑓𝑏𝑒𝑠𝑡

 𝜏𝑗
𝑛𝑒𝑤 = 𝜏𝑗

𝑜𝑙𝑑 + ∑ ∆𝜏𝑗
(𝑘)

𝑘

 (6)

Reduced for 𝑓𝑤𝑜𝑟𝑠𝑡 .

 𝜏𝑗
𝑛𝑒𝑤 = (1 − 𝜌)𝜏𝑗

𝑜𝑙𝑑 (7)

Fig. 1 outlines the steps to obtain the optimal solution in the form of a flowchart.

The parameter adjustment phase is very complex and requires several attempts to find the right

settings. For ACO, choosing a larger population N (number of ants in the colony) can explore more

of the search space but increases computation time. It is wise to start with a moderate number and

adjust based on the complexity of the problem and available computational resources.

Similarly, increasing the number of iterations allows for more thorough exploration and

refinement but requires more time. To adjust this parameter, it is best to determine it based on the

convergence rate observed during initial trials. If improvements slow significantly, consider stopping

earlier.

Start with 𝛼 = 1. Adjust upwards if the algorithm converges too slowly and downwards if it

converges too quickly and lacks exploration. Next, start with 𝛽 = 2. Increase it if the problem has

strong heuristic information and decrease it if the heuristic information is less reliable. Typical values

for the evaporation rate (𝜌) range from 0.1 to 0.7. Adjust based on the required balance between

exploration and exploitation.

For the pheromone reinforcement coefficient (𝜁), generally use small reinforcement values

initially and adjust based on observed performance.

 Particle Swarm Optimization

PSO is an optimization algorithm based on the behavior of flocks of birds or swarms of insects.

In PSO, a population of potential solutions, called "particles," is iteratively improved by moving

through the search space based on their own experience and that of their neighbors. Each particle has

a position and a velocity in the search space. The particles adjust their velocity and position based on

the performance of the best solutions found by themselves and their neighbors. PSO is often used for

ISSN 2775-2658
International Journal of Robotics and Control Systems

1191
Vol. 4, No. 3, 2024, pp. 1186-1206

Adil Najem (Simulation and Arduino Hardware Implementation of ACO, PSO, and FPA Optimization Algorithms for

Speed Control of a DC Motor)

continuous or discrete optimization problems and is known for its conceptual simplicity and ease of

implementation. To use PSO, we must proceed with the following steps:

Fig. 1. Flowchart for ACO algorithm

Step 1:

• Initial population (number of particles N)

• Initial position (𝑥) and velocity (𝑣)

• Assign 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡

With 𝑝𝑏𝑒𝑠𝑡: local optimal solution and 𝑔𝑏𝑒𝑠𝑡: global optimal solution.

Step 2: Update velocity and position of each particle

 𝑣𝑖(𝑡) = 𝜃𝑣𝑖(𝑡 − 1) + 𝑐1𝑟1 (𝑝𝑏𝑒𝑠𝑡,𝑖 − 𝑥𝑖(𝑡 − 1)) + 𝑐2𝑟2 (𝑔𝑏𝑒𝑠𝑡,𝑖 − 𝑥𝑖(𝑡 − 1)) (8)

 ,

1192
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 4, No. 3, 2024, pp. 1186-1206

Adil Najem (Simulation and Arduino Hardware Implementation of ACO, PSO, and FPA Optimization Algorithms for

Speed Control of a DC Motor)

 𝑥𝑖(𝑡) = 𝑥𝑖(𝑡 − 1) + 𝑣𝑖(𝑡) (9)

With: 𝜃 is inertia weight, 𝑐1𝑎𝑛𝑑 𝑐2 are individual and social cognitive,

𝑟1 𝑎𝑛𝑑 𝑟2 are uniformly distributed random numbers in the rang (0,1).

Step 3: Evaluate the objective function ITAE and update 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡.

Step 4: Repeat the same procedure for several iterations.

[34] The flowchart provides an overview of the steps to optimize using PSO Fig. 2.

Fig. 2. Flowchart for PSO algorithm

To adjust the PSO parameters, the number of particles and iterations should be moderate at the

beginning.

Start with the cognitive parameter (C1), which influences the personal experience of each

particle in updating its position. Higher values increase the importance of the individual component,

favoring exploration. Adjust (C1) based on the need for individual exploration.

Next, adjust the social parameter (C2), which influences the collective experience of the group

of particles in updating their positions. Adjust (C2) based on the need for collective exploration.

ISSN 2775-2658
International Journal of Robotics and Control Systems

1193
Vol. 4, No. 3, 2024, pp. 1186-1206

Adil Najem (Simulation and Arduino Hardware Implementation of ACO, PSO, and FPA Optimization Algorithms for

Speed Control of a DC Motor)

Finally, the inertia weight (θ) influences the previous velocity of a particle on its current

velocity. Typical values range from 0.4 to 0.9. A decreasing inertia weight, which diminishes over

iterations, is often used to balance exploration and exploitation.

 Flower Pollination Algorithm

FPA is a bio-inspired optimization algorithm based on the process of flower pollination in

nature. In FPA, each potential solution is considered as a "flower," and the pollination processes

between flowers are simulated to search for optimal solutions. Flowers attract pollinators (such as

bees, butterflies, etc.) by releasing attractive chemical substances. These pollinators carry pollen

between flowers, facilitating reproduction and diversification of plant species. In FPA, solutions are

updated based on the quality of flowers and interactions between them. FPA is often used for

continuous and discrete optimization problems and is appreciated for its simplicity and robustness.

[54] The following steps describe the FPA algorithm:

a) Step1:

• Initialize the population of flowers (N) based on the following equation:

 𝑋𝑖 = 𝐿𝑏 + 𝑅𝑎𝑛𝑑 × (𝑈𝑏 − 𝐿𝑏) (10)

Where [𝐿𝑏,𝑈𝑏]is the search space for optimal solutions.

• Determine the objective function for each flower, then select the flower for the best solution 𝑋𝑔.

b) Step 2: Select a random number (Rand) for each flower, if the number is less than the probability

𝜌, then generate a step 𝜎 and apply global pollination.

 𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝜎(𝑋𝑖
𝑡 − 𝑋𝑔) (11)

Where 𝑋𝑖
𝑡 is the pollen i or the solution vector 𝑋𝑖 at the 𝑡𝑡ℎ iteration.

𝑋𝑔: the current best solution among the current options in the current iteration.

c) Step 3: For numbers greater than the probability ρ, apply local pollination.

 𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝜖(𝑋𝑗
𝑡 − 𝑋𝑘

𝑡) (12)

Where 𝑋𝑗
𝑡 , 𝑋𝑘

𝑡 represent the pollens of different flowers of the same species. 𝜖 belongs to the interval

[0,1].

d) Step 4: In case the new solutions are more promising, they should be replaced and repeat the

steps for all populations to find the current solution.

To adjust the FPA parameters, start with moderate values for the population size and the number

of iterations. Then, adjust according to the need for global exploration (p) or local exploration (1-p).

If the algorithm converges too slowly, increase (p). If the algorithm converges too quickly without

finding good solutions, decrease (p). Fig. 3 represents the flowchart that describes the steps to follow

to achieve an optimal solution.

 PID Controller

PID Controller One of the key objectives of this study is to optimize the performance of the PID

controller by determining coefficients that ensure optimal rise time, settling time, overshoot, and

accuracy. To achieve this, we have chosen to use three optimization algorithms: ACO, PSO, and

FPA. These algorithms aim to adjust the parameters of the PID, whose transfer function is as follows:

 𝑈(𝑠)

𝐸(𝑠)
= 𝑘𝑝 +

𝑘𝑖

𝑠
+ 𝑘𝑑𝑠 (13)

1194
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 4, No. 3, 2024, pp. 1186-1206

Adil Najem (Simulation and Arduino Hardware Implementation of ACO, PSO, and FPA Optimization Algorithms for

Speed Control of a DC Motor)

With 𝑘𝑝 representing the proportional coefficient, 𝑘𝑖 the integral coefficient, 𝑘𝑑 the derivative

coefficient, 𝑈 the control signal, and E the error between the actual value and the setpoint.

Fig. 3. Flowchart for FPA algorithm [47]

Fig. 4 depicts the functional diagram of a speed control system for a PMDC motor using an

Arduino Mega 2560 board. In this system, a PID controller optimized by optimization algorithms is

implemented on real hardware. The Arduino board sends a Pulse Width Modulation (PWM) signal

to the L298n driver, which in turn provides an optimal voltage to the PMDC motor to track the speed

setpoint. A Hall effect speed sensor sends pulses to the Arduino board via a feedback loop, allowing

the board to convert them into a numeric value expressing the speed in revolutions per minute (RPM).

The error is deduced by subtracting the speed expressed in RPM from the setpoint.

Fig. 4. Block diagram of a speed control

 et point

 nterrupt

ISSN 2775-2658
International Journal of Robotics and Control Systems

1195
Vol. 4, No. 3, 2024, pp. 1186-1206

Adil Najem (Simulation and Arduino Hardware Implementation of ACO, PSO, and FPA Optimization Algorithms for

Speed Control of a DC Motor)

 Identification

To validate these optimization algorithms and determine the coefficients of the PID controller,

we need to go through the model identification process using the MATLAB Identification Toolbox,

which provides a series of powerful tools for identifying models of dynamic systems from

experimental data. This process involves estimating the parameters of a mathematical model using

measurements or observations from the real system.

We will model the transfer function of the PMDC motor and the L298N driver. To do this, we

will create a model in MATLAB/Simulink that will be implemented on Arduino. This model will

take input from the Hall effect speed sensor pulse and produce a PWM signal as output.

Subsequently, measurements of different speed values for various duty cycle settings are sent to

MATLAB, as shown in Fig. 5 and Fig. 6.

Fig. 5. Block diagram of the identification function

Fig. 6. Block diagram of the identification function in MATLAB/Simulink

Block 1 sends a PWM signal through pin 5 of the Arduino board to the L298n driver, which in

turn sends a PWM signal to the PMDC motor. Block 2 enables the acquisition of pulses generated

by the speed sensor, connected to interrupt pin 2 of the Arduino. This block also detects rising edges

and converts them into integer values. Block 3, illustrated in Fig. 7, calculates the speed in RPM. To

do this, we first count the detected pulses by incrementing a counter at each detected rising edge.

We then consider only the last 100 samples. At this stage, we have the number of pulses, but to

convert it to RPM, we use the following formula:

𝑅𝑃𝑀 =

𝑁 × 1000 × 60

𝑇 × 𝑃
 (14)

 rduino ega otor river C otor

 ncoder ensor

 nterrupt

 peed

 ia

1196
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 4, No. 3, 2024, pp. 1186-1206

Adil Najem (Simulation and Arduino Hardware Implementation of ACO, PSO, and FPA Optimization Algorithms for

Speed Control of a DC Motor)

Where 𝑁 represents the number of counted pulses, 𝑇 is the time required to count the 100 samples,

and P is the number of points per revolution of the sensor. This formula is represented as a block in

Fig. 7.

Fig. 7. Diagram for reading speed in RPM in MATLAB/Simulink

The core principle of system identification revolves around deriving an approximate

mathematical pattern based on collected experimental data, representing the system's input and

output. In MATLAB, this procedure can be facilitated using one of the software's built-in toolboxes,

as depicted in Fig. 8. This toolbox comprises various functions tailored for the system identification

process, including preprocessing and estimation. Users can import experimental data directly into

the toolbox's interface and choose the mathematical operations required for the system identification

algorithm. Additionally, the toolbox offers functions to analyze the performance of the estimated

system model, rendering it a comprehensive solution for system identification tasks.

Fig. 8. MATLAB system identification toolbox

After collecting the data (duty cycle and speed) and storing it in MATLAB's Workspace, we use

the System Identification Toolbox to estimate the transfer function of the system to be controlled.

Multiple attempts are necessary to achieve a good estimation of the transfer function. The results of

this estimated transfer function are then compared in a closed-loop simulation against real-world

operations using the actual system. Adjusting the transfer function derived from the toolbox is

essential to closely match the real-world behavior. The transfer function of the PMDC deduced from

the identification box is:

 700.3

𝑠2 + 25.11𝑠 + 12
 (15)

ISSN 2775-2658
International Journal of Robotics and Control Systems

1197
Vol. 4, No. 3, 2024, pp. 1186-1206

Adil Najem (Simulation and Arduino Hardware Implementation of ACO, PSO, and FPA Optimization Algorithms for

Speed Control of a DC Motor)

3. Simulation

The simulation in MATLAB aims to determine the optimal coefficients of the PID controller

using optimization algorithms (ACO, PSO, and FPA) based on the transfer function deduced from

the identification tool. Fig. 9 illustrates the work carried out in MATLAB/Simulink.

Fig. 9. Block diagram of PID control with optimization algorithms

Table 1, Table 2, and Table 3 elucidate the parameters of the algorithms (ACO, PSO, and FPA)

used to determine the optimized coefficients 𝑘𝑝, 𝑘𝑖 𝑎𝑛𝑑 𝑘𝑑 to achieve a minimal ITAE objective

function.

Table 1. ACO Parameter values

Description and Symbol Values

Population size(N) 100
Maximum number of iteration (Iter) 120

 lpha(α) 1

 eta(β) 0

Evaporation rate(ρ) 0.6
Step to obtain an optimal solution(h) 0.01

Reinforce pheromone(ζ) 2

Table 2. PSO Parameter values

Description and Symbol Values

Population size(N) 80

Maximum number of iteration (Iter) 90

Cognitive Parameter(C1) 2
Social parameter(C2) 2

Table 3. FPA Parameter values

Description and Symbol Values

Population size(N) 80
Maximum number of iteration (Iter) 100

Probability of switching (p) 0.7

Fig. 10 compares the performance of three algorithms: ACO, FPA, and PSO. The PSO algorithm

shows a response time of 0.768s, a rise time of 0.102s, and an overshoot of 13%. In comparison, the

FPA algorithm exhibits a faster response time at 0.347s with an overshoot of 6.4%, which is better

than PSO in certain aspects. On the other hand, ACO achieves a response time of 0.322s with an

C
 C

 C

 et point e

 peed

1198
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 4, No. 3, 2024, pp. 1186-1206

Adil Najem (Simulation and Arduino Hardware Implementation of ACO, PSO, and FPA Optimization Algorithms for

Speed Control of a DC Motor)

overshoot of only 0.68%, demonstrating its efficiency compared to the other two algorithms (PSO

and FPA).

Although ACO has proven effective in optimization compared to PSO and FPA, it requires more

time and its numerous parameters make the choice of values more complex. In comparison, PSO and

FPA are easier to manage due to their simplicity and fewer parameters.

Fig. 10. Speed response by MATLAB/Simulink

Table 4 summarizes the performance obtained using the three optimization algorithms.

Table 4. Results of simulation of PSO, FPA and ACO

Method
PID Controller Parameters

Rise

Time

tr (sec)

Settling

Time

ts (sec)

Overshoot

MP (%) 𝑘𝑝 𝑘𝑖 𝑘𝑑

PSO 4.5 6.48 0.03 0.102 0.768 13
FPA 3 1.758 0.000127 0.138 0.347 6

ACO 8 2 0.4 0.196 0.322 0.68

4. Experimentation

In this practical phase, we will test these optimization coefficients on real hardware by

integrating them into the embedded controller of an Arduino Mega board. The part implemented on

Arduino is illustrated in Fig. 11 and Fig. 12. as well as the PMDC motor with characteristics

mentioned in Table 5.

Fig. 11. Experimental work illustration

ISSN 2775-2658
International Journal of Robotics and Control Systems

1199
Vol. 4, No. 3, 2024, pp. 1186-1206

Adil Najem (Simulation and Arduino Hardware Implementation of ACO, PSO, and FPA Optimization Algorithms for

Speed Control of a DC Motor)

Table 5. Parameters and corresponding values of PMDC

Parameter and Symbol Values

Moment of Inertia (𝐽) 19e-7𝑘𝑔. 𝑚2

Friction coefficient (𝑓) 52.77e-6N.ms

Back EMFconstant(𝑘𝑒) 0.0229V/rad. 𝑠−1

Torque constant (𝑘𝑡) 0.0214N.m/A

Electric resistance(R) 8Ω

Armature inductance(L) 10e-03H

Fig. 12. Block diagram of a speed control in MATLAB/Simulink

This practical phase will allow us to effectively evaluate the comparison between the three

algorithms (ACO, PSO, and FPA), taking into account all nonlinearities and uncertainties of all

components in the control chain.

To start with, we tested the following optimization coefficients: 𝑘𝑝=2.5, 𝑘𝑖=2, and 𝑘𝑑=0.4,

which are very close to those of ACO with a set point of 1600 rpm. Fig. 13 shows the motor speed,

which exhibits fluctuations that could affect speed control. Therefore, we decided to use a low-pass

filter, whose cutoff frequency was adjusted through trial and error. Additionally, we made slight

modifications to the optimization coefficients (𝑘𝑝=3, 𝑘𝑖=2, and 𝑘𝑑=0.4) since the identified function

represents an approximation of the system. Fig. 14 illustrates the adjustments made to the control

system and the positive effect of the low-pass filter on motor speed. Speed sensors can be affected

by electrical noise and other disturbances, creating rapid and erratic fluctuations in the speed signal.

The low-pass filter attenuates the high-frequency components of the speed measurement signal,

reducing noise and providing a cleaner signal for the PID controller. A more stable speed

measurement allows the PID controller to operate more effectively, improving the accuracy and

stability of speed control.

Integrating a low-pass filter in the speed control of a PMDC motor offers significant advantages

in terms of noise reduction, improved stability, and reduced mechanical wear. However, it is crucial

to manage the delays introduced by the filter and choose an appropriate cutoff frequency to balance

noise reduction and system responsiveness. By adopting an experimental and iterative approach, it

is possible to leverage the benefits of filtering while minimizing its drawbacks.

Based on the optimization coefficients obtained through the iterations using the algorithms

(ACO, PSO, and FPA) in MATLAB/Simulink, we were able to control the speed of the PMDC on

real hardware, with some adjustments to kp, ki, and kd considering that the transfer function in

MATLAB is an approximation of the real system. Fig. 15 highlights this control, and Table 4

summarizes the control performance.

1200
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 4, No. 3, 2024, pp. 1186-1206

Adil Najem (Simulation and Arduino Hardware Implementation of ACO, PSO, and FPA Optimization Algorithms for

Speed Control of a DC Motor)

Fig. 13. Speed response by hardware without low-pass filter

Fig. 14. Speed response by hardware with low-pass filter

Fig. 15. Speed response by hardware of ACO, PSO and FPA

ISSN 2775-2658
International Journal of Robotics and Control Systems

1201
Vol. 4, No. 3, 2024, pp. 1186-1206

Adil Najem (Simulation and Arduino Hardware Implementation of ACO, PSO, and FPA Optimization Algorithms for

Speed Control of a DC Motor)

The results of the experiment show a close correlation between the simulation results and those

obtained through PSO optimization. The system optimized by PSO demonstrates a response time of

0.753 seconds, an overshoot of 19%, and a rise time of 0.204 seconds. In comparison, using FPA

yields a response time of 0.644 seconds with an overshoot of only 0.81%. These performances are

remarkably close to those achieved with ACO, which shows a response time of 0.596 seconds and

an overshoot of 1.68%. Table 6 shows these results.

Table 6. Comparative performance of PSO, FPA and ACO

Method

PID Controller Parameters Rise Time

tr (sec)

Settling Time

ts (sec)

Overshoot

MP (%) 𝐤𝐩 𝐤𝐢 𝐤𝐝

PSO 1.6 6.48 0.1 0.204 0.753 19

FPA 0.95 1.758 0.000127 0.520 0.644 0.81

ACO 4.2 2 0.4 0.534 0.596 1.68

The ACO algorithm exhibits lower overshoot and a reduced response time compared to PSO,

but is relatively close to FPA. A possible explanation is that ACO is known for its good balance

between exploration and exploitation. The ants deposit pheromones that guide the search for

solutions while exploring new possibilities. This balance allows ACO to find optimal solutions

quickly and stably, which can explain the low overshoot and rapid response time. Additionally, ACO

enables dynamic adaptation based on pheromones, helping to avoid suboptimal solutions and

converge more quickly to an effective solution.

PSO focuses heavily on exploiting the best solutions found by the particles, which can result in

higher overshoot if the particles prematurely converge on a local suboptimal solution. This can also

lengthen the response time when adjustments are needed to move away from these local solutions.

FPA uses both global and local pollination strategies, allowing it to balance exploration and

exploitation well. The similar results between ACO and FPA suggest that both algorithms effectively

manage the balance between exploring new solutions and exploiting known ones.

Table 7 consolidates the simulation and experimental sections. This comparison helps to better

understand the performance differences between the simulation and experimental setups and to

closely examine the causes of these result discrepancies.

Table 7. Simulation and experimentation results

Method
PID Controller Parameters Rise Time

tr (sec)

Settling Time

ts (sec)

Overshoot

MP (%) 𝐤𝐩 𝐤𝐢 𝐤𝐝

PSO (experimental) 1.6 6.48 0.1 0.204 0.753 19
PSO

(simulation)
4.5 6.48 0.03 0.102 0.768 13

FPA (experimental) 0.95 1.758 0.000127 0.520 0.644 0.81

FPA
(simulation)

3 1.758 0.000127 0.138 0.347 6

ACO (experimental) 4.2 2 0.4 0.534 0.596 1.68

ACO
(simulation)

8 2 0.4 0.196 0.322 0.68

Several factors explain the differences between simulation and experimental results:

• Latency and Response Time: Calculation and response times in a simulation environment are

often ideal and without latency. On an Arduino board, processing times can introduce delays

that affect the PID control performance.

• Noise and Disturbances: Simulations may neglect or minimize the impact of noise and

disturbances on the sensors and the L298n driver. In practice, electrical noise, mechanical

vibrations, and other disturbances can degrade control accuracy.

1202
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 4, No. 3, 2024, pp. 1186-1206

Adil Najem (Simulation and Arduino Hardware Implementation of ACO, PSO, and FPA Optimization Algorithms for

Speed Control of a DC Motor)

• Sensor Resolution and Accuracy: Sensors in simulations can be modeled with ideal precision.

In reality, sensors have limitations in terms of resolution and accuracy, which can affect PID

performance.

• Hardware Limitations: Simulations do not always account for the hardware limitations of the

Arduino and peripheral components. Power constraints, processing capacity, and limited

memory can impact PID control performance.

• Non-linearities and Saturation: Simulations may not capture all system non-linearities or the

effects of saturation in switches. In practice, PMDC motors may exhibit non-linear behaviors

and reach saturation limits that degrade performance.

Based on this experiment, the choice of the FPA and ACO algorithms is justified over the PSO

approaches. Additionally, FPA has the advantage of being simpler to use, with fewer parameters to

adjust.

This article can lead us towards a potential research avenue, such as a hybrid FPA-ACO

algorithm, by leveraging the strengths of both algorithms. The global search capability of FPA to

avoid local minima, combined with ACO's ability to refine solutions through pheromone-guided

search, potentially leads to faster and more precise convergence, making it a promising solution for

complex control tasks.

5. Conclusion

This study highlights the importance of comparing optimization algorithms to help researchers

select the most suitable one for a given situation. The experimental results show that the ACO

algorithm, with a response time of 0.596s and an overshoot of 1.68%, and the FPA algorithm, with

a response time of 0.644s and an overshoot of 0.81%, are more effective in tuning PID parameters

to achieve reduced response times, minimal overshoot, and increased accuracy in controlling the

speed of the PMDC compared to the PSO algorithm. Although the performance obtained with PSO-

optimized PID parameters is acceptable, with a response time of 0.768s and an overshoot of 19%,

the results of FPA and ACO are similar. However, FPA is preferable to ACO due to its simplicity

and faster implementation. These findings can be beneficial for applications similar to our study,

such as robotic arms used in assembly, welding, or other repetitive tasks, and industrial pumps used

for fluid transfer in manufacturing processes.

The practical part addressed the speed ripples, which have very direct consequences on the

motor and control accuracy, by mitigating them with a low-pass filter in the feedback loop, while

managing the delays introduced by the filter and choosing the appropriate cutoff frequency to balance

noise reduction and system responsiveness.

We plan to extend this study to more complex nonlinear systems to evaluate the limits and

effectiveness of each algorithm, also incorporating a practical component into our approach.

Author Contribution: Adil Najem: Conceptualization, methodology, experimentation. Ahmed Moutabir:

Writing, preparation of the original version. Abderrahmane Ouchatt: Supervision.

Funding: No external funding was allocated to this research.

Acknowledgments: We express our gratitude to the members and leaders of the “ aboratory ”

for their insightful comments and clear-sighted recommendations.

Conflicts of Interest: The authors certify the absence of known conflicting financial interests or personal

relationships that could have influenced their work presented in this article.

ISSN 2775-2658
International Journal of Robotics and Control Systems

1203
Vol. 4, No. 3, 2024, pp. 1186-1206

Adil Najem (Simulation and Arduino Hardware Implementation of ACO, PSO, and FPA Optimization Algorithms for

Speed Control of a DC Motor)

Link to the Video Showing Part of the Experiment:

youtu.be/MNiM9PGHX1s?si=Jnk7FGNCSR0FWrJt

References

[1] V. Kumarasamy, V. KarumanchettyThottam Ramasamy, G. Chandrasekaran, G. Chinnaraj, P.

 ivalingam, and . . Kumar, “ review of integer order and fractional order controllers using

optimization techniques for speed control of brushless C motor drive,” International Journal of System

Assurance Engineering and Management, vol. 14, pp. 1139-1150, 2023, https://doi.org/10.1007/s13198-

023-01952-x.

[2] S. B. Joseph, . benga ada, . bidemi, . peoluwa yewola, and . Khammas, “ etaheuristic

algorithms for controller parameters tuning: review, approaches and open problems,” Heliyon, vol.

8, no. 5, p. E09399, 2022, https://doi.org/10.1016/j.heliyon.2022.e09399.

[3] . Kumar and . . andal, “ ressure control of fixed displacement variable speed radial piston pump

using controller,” Materials Today Proceedings, vol. 56, pp. 1840-1846, 2022,

https://doi.org/10.1016/j.matpr.2021.11.034.

[4] M. Z. B. A. Karim, and N. M. Thamrin, “ ervo otor Controller using and raphical ser nterface

on aspberry i for obotic rm,” Journal of Physics: Conference Series, vol. 2319, no. 1, p. 012015,

2022, https://doi.org/10.1088/1742-6596/2319/1/012015.

[5] . ahyudie, . . usilo, C. . . andar, . Fayez, and . rrouissi, “ imple obust uning for

Magnetic Levitation Systems Using Model-free Control and ℋ∞ Control trategies,” International

Journal of Control, Automation and Systems, vol. 19, pp. 3956-3966, 2021,

https://doi.org/10.1007/s12555-020-0253-8.

[6] . Kadry and . ajinikanth, “ esign of Controller for agnetic evitation ystem using arris

Hawks Optimization,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 6, no. 2, pp. 70-78,

2020, http://dx.doi.org/10.26555/jiteki.v6i2.19167.

[7] . akria, . zzouzi, and . ozim, “Chaos Control and Stabilization of a PID Controlled Buck

Converter sing the potted yena ptimizer,” Engineering, Technology and Applied Science Research,

vol. 11, no. 6, pp. 7922-7926, 2021, https://doi.org/10.48084/etasr.4585.

[8] . zci, . ekimoğlu, and . kinci, “ new artificial ecosystem-based optimization integrated with

Nelder- ead method for controller design of buck converter,” Alexandria Engineering Journal, vol.

61, no. 3, pp. 2030-2044, 2022, https://doi.org/10.1016/j.aej.2021.07.037.

[9] . aszak and . Łangowski, " n utomatic elf-Tuning Control System Design for an Inverted

Pendulum," IEEE Access, vol. 8, pp. 26726-26738, 2020,

https://doi.org/10.1109/ACCESS.2020.2971788.

[10] M. F. Q. Say, E. Sybingco, A. A. Bandala, R. R. P. Vicerra and A. Y. Chua, "A Genetic Algorithm

Approach to PID Tuning of a Quadcopter UAV Model," 2021 IEEE/SICE International Symposium on

System Integration (SII), pp. 675-678, 2021, https://doi.org/10.1109/IEEECONF49454.2021.9382697.

[11] R. Khandait, V. Kumar, V. Bhurse, V. Tiwari and S. Khubalkar, "Quadcopter Control using Different

Controllers," 2022 International Conference on Intelligent Controller and Computing for Smart Power

(ICICCSP), pp. 1-6, 2022, https://doi.org/10.1109/ICICCSP53532.2022.9862416.

[12] . hmmed, . khter, . . . Karim, and F. . . hamed, “ enetic lgorithm Based PID Parameter

 ptimization,” American Journal of Intelligent Systems, vol. 10, no. 1, pp. 8-13, 2020,

https://doi.org/10.5923/j.ajis.20201001.02.

[13] Y. ong, C. Fu, and . erci, “ ptimization and determination of the parameters for a based
ventilation system for smoke control in tunnel fires: Comparative study between a genetic algorithm and

an analytical trial-and-error method,” Tunnelling and Underground Space Technology, vol. 136, p.

105088, 2023, https://doi.org/10.1016/j.tust.2023.105088.

[14] D. Baidya, S. Dhopte and M. Bhattacharjee, "Sensing System Assisted Novel PID Controller for Efficient

Speed Control of DC Motors in Electric Vehicles," IEEE Sensors Letters, vol. 7, no. 1, pp. 1-4, 2023,

https://doi.org/10.1109/LSENS.2023.3234400.

youtu.be/MNiM9PGHX1s?si=Jnk7FGNCSR0FWrJt
https://doi.org/10.1007/s13198-023-01952-x
https://doi.org/10.1007/s13198-023-01952-x
https://doi.org/10.1016/j.heliyon.2022.e09399
https://doi.org/10.1016/j.matpr.2021.11.034
https://doi.org/10.1088/1742-6596/2319/1/012015
https://doi.org/10.1007/s12555-020-0253-8
http://dx.doi.org/10.26555/jiteki.v6i2.19167
https://doi.org/10.48084/etasr.4585
https://doi.org/10.1016/j.aej.2021.07.037
https://doi.org/10.1109/ACCESS.2020.2971788
https://doi.org/10.1109/IEEECONF49454.2021.9382697
https://doi.org/10.1109/ICICCSP53532.2022.9862416
https://doi.org/10.1016/j.tust.2023.105088
https://doi.org/10.1109/LSENS.2023.3234400

1204
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 4, No. 3, 2024, pp. 1186-1206

Adil Najem (Simulation and Arduino Hardware Implementation of ACO, PSO, and FPA Optimization Algorithms for

Speed Control of a DC Motor)

[15] A. A. Abd Samat, M. A. Subani, N. F. Ab Aziz, N. A. Salim, K. Daud and A. I. Tajudin, "PSO-Based PI

Controller for Speed Control Of DC Motor," 2022 IEEE International Conference on Power and Energy

(PECon), pp. 481-486, 2022, https://doi.org/10.1109/PECon54459.2022.9988840.

[16] F. Z. Baghli, Y. Lakhal, and Y. A. E. Kadi, “ he fficiency of an ptimized Controller ased on

Ant Colony Algorithm (ACO-PID) for the Position Control of a Multi-articulated ystem,” Journal of

Robotics and Control, vol. 4, no. 3, pp. 289-298, 2023, https://doi.org/10.18196/jrc.v4i3.17709.

[17] . u, . iu, Q. Cui, X. a, and . ang, “ Controller arameter ptimized by eformative

 rtificial ee Colony lgorithm,” Journal of Mathematics, vol. 2022, no. 1, pp. 1-16, 2022,

https://doi.org/10.1155/2022/3826702.

[18] A. I. Tajudin, M. A. D. Izani, A. A. A. Samat, S. Omar and M. A. M. Idin, "Design a Speed Control for

DC Motor Using an Optimal PID Controller Implementation of ABC Algorithm," 2022 IEEE 12th

International Conference on Control System, Computing and Engineering (ICCSCE), pp. 97-102, 2022,

https://doi.org/10.1109/ICCSCE54767.2022.9935644.

[19] Y. uthalapati and . . . K. aidu, “ ovel odulating Controller for a peed Control of C
 otor dopting Flower ollination lgorithm,” Intelligent Computing in Control and Communication,

vol. 702, pp. 159-168, 2021, https://doi.org/10.1007/978-981-15-8439-8_14.

[20] T. Chiranjeevi et al., “Control of electric machines using flower pollination algorithm based fractional

order controller,” Global Transitions Proceedings, vol. 2, no. 2, pp. 227–232, 2021,

https://doi.org/10.1016/j.gltp.2021.08.057.

[21] D. Guha, P. K. Roy, S. Banerjee, S. Padmanaban, F. Blaabjerg and D. Chittathuru, "Small-Signal Stability

Analysis of Hybrid Power System With Quasi-Oppositional Sine Cosine Algorithm Optimized Fractional

Order PID Controller," IEEE Access, vol. 8, pp. 155971-155986, 2020,

https://doi.org/10.1109/ACCESS.2020.3018620.

[22] P. Dutta and S. K. ayak, “ rey olf ptimizer ased Controller for peed Control of C

 otor,” Journal of Electrical Engineering & Technology, vol. 16, no. 2, pp. 955-961, 2021,

https://doi.org/10.1007/s42835-021-00660-5.

[23] J. hookya, . ijaya Kumar, J. avi Kumar, and . eshagiri ao, “ mplementation of controller
for liquid level system using m and integration of o application,” Journal of Industrial

Information Integration, vol. 28, p. 100368, 2022, https://doi.org/10.1016/j.jii.2022.100368.

[24] . . ani, . aiful slam, · uhammad, and . llah, “ ptimal tuning for controlling the
temperature of electric furnace by genetic algorithm,” SN Applied Sciences, vol. 1, no. 880, 2019,

https://doi.org/10.1007/s42452-019-0929-y.

[25] Y. hou, J. hang, X. Yang, and Y. ing, “ ptimization of Controller ased on ater Wave

 ptimization for an utomatic oltage egulator ystem,” Information Technology and Control, vol.

48, no. 1, pp. 160-171, 2019, https://doi.org/10.5755/j01.itc.48.1.20296.

[26] B. N. Kommula and V. R. Kota, “Direct instantaneous torque control of Brushless DC motor using firefly

Algorithm based fractional order PID controller,” Journal of King Saud University: Engineering

Sciences,vol. 32, no. 2, pp.133-140, 2020, https://doi.org/10.1016/j.jksues.2018.04.007.

[27] M. Ali, H. Suyono, M. A. Muslim, M. R. Djalal, Y. M. Safarudin, A. A. Firdaus, “ etermination of the

parameters of the firefly method for PID parameters in solar panel applications,” Sinergi, vol. 26, no. 2,

pp. 265-272, 2022, https://dx.doi.org/10.22441/sinergi.2022.2.016.

[28] D. F. U. Putra, A. A. Firdaus, H. Arof, N. P. U. Putra, and V. A. Kusuma, “ mproved load frequency

control performance by tuning parameters of controller and using at algorithm,” Bulletin of

Electrical Engineering and Informatics, vol. 12, no. 5, pp. 2624-2634, 2023,

https://doi.org/10.11591/eei.v12i5.4548.

[29] S. Tiacharoen, "Optimal Tuning of 2DOF-PID Controllers Using Bat Algorithm," 2023 7th International

Conference on Information Technology (InCIT), pp. 388-391, 2023,

https://doi.org/10.1109/InCIT60207.2023.10412900.

[30] A. Loganathan and N. S. Ahmad, "Robot Path Planning via Harris Hawks Optimization: A Comparative

Assessment," 2023 International Conference on Energy, Power, Environment, Control, and Computing

https://doi.org/10.1109/PECon54459.2022.9988840
https://doi.org/10.18196/jrc.v4i3.17709
https://doi.org/10.1155/2022/3826702
https://doi.org/10.1109/ICCSCE54767.2022.9935644
https://doi.org/10.1007/978-981-15-8439-8_14
https://doi.org/10.1016/j.gltp.2021.08.057
https://doi.org/10.1109/ACCESS.2020.3018620
https://doi.org/10.1007/s42835-021-00660-5
https://doi.org/10.1016/j.jii.2022.100368
https://doi.org/10.1007/s42452-019-0929-y
https://doi.org/10.5755/j01.itc.48.1.20296
https://doi.org/10.1016/j.jksues.2018.04.007
https://dx.doi.org/10.22441/sinergi.2022.2.016
https://doi.org/10.11591/eei.v12i5.4548
https://doi.org/10.1109/InCIT60207.2023.10412900

ISSN 2775-2658
International Journal of Robotics and Control Systems

1205
Vol. 4, No. 3, 2024, pp. 1186-1206

Adil Najem (Simulation and Arduino Hardware Implementation of ACO, PSO, and FPA Optimization Algorithms for

Speed Control of a DC Motor)

(ICEPECC), pp. 1-4, 2023, https://doi.org/10.1109/ICEPECC57281.2023.10209484.

[31] . kinci, . zci and . ekimoğlu, " peed Control of C otor sing arris awks Optimization

Algorithm," 2020 International Conference on Electrical, Communication, and Computer Engineering

(ICECCE), pp. 1-6, 2020, https://doi.org/10.1109/ICECCE49384.2020.9179308.

[32] A. Najem, . outabir, . uchatti, and . l aissouf, “ xperimental alidation of the eneration of

Direct and Quadratic Reference Currents by Combining the Ant Colony Optimization Algorithm and

 liding ode Control in using the rocess ,” International Journal of Robotics and Control

Systems, vol. 4, no. 1, pp. 188-216, 2024, https://doi.org/10.31763/ijrcs.v4i1.1286.

[33] . Chauhan, . ingh, and . ingh, “ odified ant colony optimization based controller design for

coupled tank system,” Engineering Research Express, vol. 3, no. 4, p. 045005, 2021,

https://doi.org/10.1088/2631-8695/ac2bf3.

[34] . . ahayu, . a’arif, and . Cakan, “ article warm Optimization (PSO) Tuning of PID Control on

 C otor,” International Journal of Robotics and Control Systems, vol. 2, no. 2, pp. 435-447, 2022,

https://doi.org/10.31763/ijrcs.v2i2.476.

[35] A. K. Kashyap and . . arhi, “ article warm ptimization aided gait controller design for a

humanoid robot,” ISA Transactions, vol. 114, pp. 306-330, 2021,

https://doi.org/10.1016/j.isatra.2020.12.033.

[36] . uan and . Yamamoto, “ esign of a einforcement earning Controller,” IEEJ transactions on

electrical and electronic engineering, vol. 16, no. 10, pp. 1354-1360, 2021,

https://doi.org/10.1002/tee.23430.

[37] A. Najem, A. Moutabir, M. Rafik and A. Ouchatti, "Comparative Study of PMSM Control Using

Reinforcement Learning and PID Control," 2023 3rd International Conference on Innovative Research

in Applied Science, Engineering and Technology (IRASET), pp. 1-5, 2023,

https://doi.org/10.1109/IRASET57153.2023.10153024.

[38] . ladipo, Y. un, . ang, “ ptimization of Controller with Metaheuristic Algorithms for DC

 otor rives: eview,” International Review of Electrical Engineering, vol. 15, no. 5, pp. 352-381, 2020,

https://doi.org/10.15866/iree.v15i5.18688.

[39] X. Zhang and Q. Zhang, "Optimization of PID Parameters Based on Ant Colony Algorithm," 2021

International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), pp. 850-853,

2021, https://doi.org/10.1109/ICITBS53129.2021.00211.

[40] A. Abushawish, M. Hamadeh, A. B. Nassif, “ Controller ains uning sing etaheuristic

 ptimization ethods: survey,” International Journal of Computers, vol. 14, pp. 87-95, 2020,

https://doi.org/10.46300/9108.2020.14.14.

[41] M. Sreejeth, R. Kumar, N. Tripathi and P. Garg, "Tuning A PID Controller using Metaheuristic

Algorithms," 2023 8th International Conference on Communication and Electronics Systems (ICCES),

pp. 276-282, 2023, https://doi.org/10.1109/ICCES57224.2023.10192687.

[42] M. V. D. Rocha, L. P. Sampaio and S. A. O. D. Silva, "Comparative Analysis of ABC, Bat, GWO and

PSO Algorithms for MPPT in PV Systems," 2019 8th International Conference on Renewable Energy

Research and Applications (ICRERA), pp. 347-352, 2019,

https://doi.org/10.1109/ICRERA47325.2019.8996520.

[43] T. O. Ajewole, O. Oladepo, K. A. Hassan, A. A. Olawuyi, O. Onarinde, “Comparative study of the

performances of three metaheuristic algorithms in sizing hybrid-source power system," Turkish Journal

of Electrical Power and Energy Systems, vol. 2, no 2, pp. 134-146, 2022,

https://doi.org/10.5152/tepes.2022.22012.

[44] . ateen, . asim, . had, . shfaq, . qbal, and . li, “ mart energy management system for

minimizing electricity cost and peak to average ratio in residential areas with hybrid genetic flower

pollination algorithm,” Alexandria Engineering Journal, vol. 77, pp. 593-611, 2023,

https://doi.org/10.1016/j.aej.2023.06.053.

[45] . advar, . avidi, . . . Javadi, and . irzarezaee, “ cooperative approach for combining
particle swarm optimization and differential evolution algorithms to solve single-objective optimization

https://doi.org/10.1109/ICEPECC57281.2023.10209484
https://doi.org/10.1109/ICECCE49384.2020.9179308
https://doi.org/10.31763/ijrcs.v4i1.1286
https://doi.org/10.1088/2631-8695/ac2bf3
https://doi.org/10.31763/ijrcs.v2i2.476
https://doi.org/10.1016/j.isatra.2020.12.033
https://doi.org/10.1002/tee.23430
https://doi.org/10.1109/IRASET57153.2023.10153024
https://doi.org/10.15866/iree.v15i5.18688
https://doi.org/10.1109/ICITBS53129.2021.00211
https://doi.org/10.46300/9108.2020.14.14
https://doi.org/10.1109/ICCES57224.2023.10192687
https://doi.org/10.1109/ICRERA47325.2019.8996520
https://doi.org/10.5152/tepes.2022.22012
https://doi.org/10.1016/j.aej.2023.06.053

1206
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 4, No. 3, 2024, pp. 1186-1206

Adil Najem (Simulation and Arduino Hardware Implementation of ACO, PSO, and FPA Optimization Algorithms for

Speed Control of a DC Motor)

problems,” Applied Intelligence, vol. 52, no. 4, pp. 4089-4108, 2022, https://doi.org/10.1007/s10489-021-

02605-x.

[46] G. Zhou, . oayedi, . ahiraei, and . yu, “ mploying artificial bee colony and particle swarm

techniques for optimizing a neural network in prediction of heating and cooling loads of residential

buildings,” Journal of Cleaner Production, vol. 254, p. 120082, 2020,

https://doi.org/10.1016/j.jclepro.2020.120082.

[47] C. Yin, Q. Fang, . i, Y. eng, X. Xu, and . ang, “ n optimized resource scheduling algorithm based
on GA and ACO algorithm in fog computing,” The Journal of Supercomputing, vol. 80, pp. 4248-4285,

2024, https://doi.org/10.1007/s11227-023-05571-y.

[48] A. I. A. Raof, M. S. Hadi, A. Jamali, H. M. Yatim, M. H. A. Talib and I. Z. M. Darus, "Intelligent PID

Controller Tuned by Bacterial Foraging Optimization Algorithm for Vibration Suppression of Horizontal

Flexible Structure," 2022 IEEE 8th International Conference on Smart Instrumentation, Measurement

and Applications (ICSIMA), pp. 237-241, 2022, https://doi.org/10.1109/ICSIMA55652.2022.9928906.

[49] . . koro and C. . nwerem, “ obust control of a C motor,” Heliyon, vol. 6, no. 12, p. E05777,

2020, https://doi.org/10.1016/j.heliyon.2020.e05777.

[50] . aarif and . . etiawan, “Control of C otor sing ntegral tate Feedback and Comparison
with : imulation and rduino mplementation,” Journal of Robotics and Control, vol. 2, no. 5, pp.

456-461, 2021, https://doi.org/10.18196/jrc.25122.

[51] . a’arif and . Çakan, “ imulation and rduino ardware mplementation of C otor Control
 sing liding ode Controller,” Journal of Robotics and Control, vol. 2, no. 6, pp. 582-587, 2021,

https://doi.org/10.18196/jrc.26140.

[52] K. . bdulhussein, . . Yasin, . J. asan, and K. . bdulhussein, “Comparison between butterfly
optimization algorithm and particle swarm optimization for tuning cascade PID control system of PMDC

motor,” International Journal of Power Electronics and Drive Systems, vol. 12, no. 2, pp. 736-744, 2021,

http://doi.org/10.11591/ijpeds.v12.i2.pp736-744.

[53] . azmjooy, . ahedi, . . strela, . adilha, and . C. . onteiro, “ peed Control of a C otor
 sing Controller ased on mproved hale ptimization lgorithm,” Metaheuristics and

Optimization in Computer and Electrical Engineering, vol. 696, pp. 153–167, 2021,

https://doi.org/10.1007/978-3-030-56689-0_8.

[54] . adweh, . Khaddam, . ayek, . tieh, and . aes lhelou, “ ptimization of P& PI controller

parameters for variable speed drive systems using a flower pollination algorithm,” Heliyon, vol. 6, no. 8,

p. E04648, 2017, https://doi.org/10.1016/j.heliyon.2020.e04648.

https://doi.org/10.1007/s10489-021-02605-x
https://doi.org/10.1007/s10489-021-02605-x
https://doi.org/10.1016/j.jclepro.2020.120082
https://doi.org/10.1007/s11227-023-05571-y
https://doi.org/10.1109/ICSIMA55652.2022.9928906
https://doi.org/10.1016/j.heliyon.2020.e05777
https://doi.org/10.18196/jrc.25122
https://doi.org/10.18196/jrc.26140
http://doi.org/10.11591/ijpeds.v12.i2.pp736-744
https://doi.org/10.1007/978-3-030-56689-0_8
https://doi.org/10.1016/j.heliyon.2020.e04648

