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1. Introduction  

The PID controller remains one of the most widespread and effective tools in the field of 

automation and control of dynamic systems [1], [2]. Its popularity endures due to its simple design, 

ease of implementation, and ability to provide robust control performance across a wide range of 

applications such as : Variable Speed Pumping Systems [3], robotic arm [4], Magnetic Levitation 

System [5], [6], Converter [7], [8], Inverted Pendulum [9], Quadcopter [10], [11]. When estimating 

PID controller coefficients, two main approaches are commonly used: 
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 This article proposes implementing and comparing the effectiveness of 

three optimization algorithms (ACO, PSO, and FPA) for tuning a 

proportional-integral-derivative (PID) controller on an Arduino Mega 2560 

board. This relatively unexplored approach aims to evaluate these 

algorithms through practical experiments. The choice of PID control is due 

to its design simplicity and widespread industrial use. Similarly, the 

permanent magnet DC motor (PMDC) was selected because of its crucial 

role in various industrial sectors. Tuning PID parameters using 

optimization algorithms has garnered increasing interest due to its 

demonstrated efficiency. Several studies have validated the stability of 

ACO, PSO, and FPA algorithms, justifying their selection. In this article, 

simulation results showed that ACO, with a response time of 0.322s and an 

overshoot of 0.68%, was more effective than PSO, which had a response 

time of 0.768s and an overshoot of 13%. FPA had a response time of 

0.347s, close to ACO, but a higher overshoot of 6%. In practice, several 

factors come into play, such as speed ripples caused by the speed sensor, 

and machine saturation, which must be considered to ensure practical 

implementation. After adjusting the PID parameters and integrating a low-

pass filter in the feedback loop, ACO, with a response time of 0.596s and 

an overshoot of 1.68%, was very close to FPA, which had a response time 

of 0.644s and an overshoot of 0.81%. This comparison highlighted the 

advantages of the FPA algorithm, which is simple to use, requires fewer 

parameters to adjust, and takes less time than ACO. This study suggests the 

potential for implementing a hybrid FPA-ACO algorithm, leveraging the 

strengths of both algorithms. 
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• Trial and Error Method: This involves manual adjustments of coefficients, which can be time-

consuming and prone to human error, and does not always guarantee an optimal solution [12], 

[13]. 

• Optimization Algorithms: These algorithms aim to minimize a cost function that measures the 

difference between the system response and the desired behavior by progressively adjusting the 

PID coefficients using mathematical techniques [14]-[16]. They offer the advantage of 

converging towards an optimal solution, especially for complex or nonlinear systems, and can 

be automated to save time and resources. However, they require accurate system modeling, and 

the choice of algorithm can impact solution quality. 

Recent research has explored a number of optimization algorithms for adjusting PID controller 

parameters such as Artificial Bee Colony Algorithm(ABC) [17], [18], Flower Pollination Algorithm 

(FPA) [19], [20], Sine Cosine Algorithm (SCA) [21], Grey Wolf Optimizer (GWO) [22], [23], 

Genetic Algorithm (GA) [24], Water Wave Optimization (WWO) [25], Firefly Algorithm(FA) [26], 

[27], Bat Algorithm (BA) [28], [29], Harris Hawk Optimization (HHA) [30], [31], Ant Colony 

Optimization(ACO) [32], [33], Particle Swarm Optimization (PSO) [34], [35], Reinforcement 

Learning (RL) [36], [37]. In addition, this article [38] presents a synthesis of the algorithms used for 

controlling DC motors via PID controllers, along with recent publications in renowned journals 

addressing this subject. The article explores various methods of optimizing the control of DC motors, 

focusing on the use of PID controllers. 

Given the variety of optimization algorithms, comparing these algorithms is essential for several 

reasons. First, it allows evaluating their efficiency and performance, as different algorithms may 

converge to different solutions in terms of speed and quality [39]. Second, it considers how sensitive 

these algorithms are to specific system characteristics, such as nonlinearities or constraints, to choose 

the most suitable one. Additionally, it assesses algorithm robustness, i.e., their ability to provide 

quality solutions under various problem conditions and configurations. Finally, it takes into account 

computational complexity by evaluating computation time and required resources to strike a balance 

between accuracy and efficiency [40]. 

 Several studies have compared these approaches, including GA_ACO_PSO [41], ABC, 

Bat_GWO_PSO [42], GA_ABC_PSO [43]. Further research has confirmed the stability of the results 

obtained by the ACO, PSO, and FPA algorithms compared to other methods. To confirm the stability 

of these algorithms and justify our choice, we propose to give the most important comparisons: 

FPA, in particular, is inspired by the natural process of flower pollination, using biological 

concepts to solve optimization problems. This allows for the effective modeling of solutions for 

complex systems. FPA effectively balances exploration (global search) and exploitation (local 

search), which is crucial for avoiding local minima and converging to optimal solutions. 

Additionally, FPA is flexible and can be applied to a wide range of optimization problems. In 

comparison with other algorithms: 

• Genetic Algorithms (GA) [44] are powerful but can be slow and suffer from premature 

convergence. FPA, with its unique pollination mechanism, often overcomes these limitations. 

PSO is easy to understand and implement, requiring fewer parameters to adjust compared to 

other algorithms like GA. It is known for its rapid convergence, especially in problems where the 

objective function is relatively smooth. PSO is inspired by the social behavior of birds, where each 

particle adjusts its position based on its own experience and that of other particles, facilitating the 

discovery of optimal solutions. PSO is robust and can effectively handle multi-dimensional and 

nonlinear problems. In comparison with other algorithms: 

• Differential Evolution (DE) [45] is powerful but can take more time to converge. PSO tends to 

converge faster with fewer parameters to adjust. 
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• Artificial Bee Colony (ABC) [46], inspired by the behavior of bees, is often more complex to 

implement than PSO, which is easier to adapt due to its simple particle dynamics. 

ACO is capable of finding optimal solutions in vast and complex search spaces by effectively 

exploiting the best solutions found so far. It can be easily adapted to various constraints and specific 

objectives, making it useful for a variety of industrial and research problems. In comparison with 

other algorithms: 

• GA can sometimes struggle to find optimal solutions for combinatorial problems due to the 

stochastic nature of crossover and mutation, whereas ACO is often better suited [47]. 

• Bacterial Foraging Optimization (BFO) [48] is powerful but can be complex to implement and 

adjust. ACO, with its mechanisms of pheromone deposition and evaporation, is often more 

intuitive and direct for pathfinding problems. 

The choice of FPA, PSO, and ACO algorithms for a comparative study on Arduino is justified 

by their unique and complementary characteristics: 

• FPA: Offers an excellent balance between exploration and exploitation, with high adaptability 

for various optimization problems. 

• PSO: Known for its simplicity and rapid convergence, particularly effective for continuous and 

nonlinear problems. 

• ACO: Particularly suited for combinatorial and discrete optimization problems, with effective 

reinforcement mechanisms. 

These three algorithms provide a broad and robust coverage of optimization problem types, 

allowing for an exhaustive and relevant comparison in various industrial and academic contexts. To 

this end, we plan to implement a PID controller whose coefficients will be optimized by the FPA 

algorithm, using an Arduino Mega 2560 board. Subsequently, we will compare the performances of 

the three algorithms (ACO, PSO, and FPA) based on experimental results applied to PMDC. This 

approach, still relatively unexplored on hardware controlling a PMDC, is relevant. 

Despite the emergence of newer technologies such as induction AC motors and stepper motors, 

PMDC motors retain an important role in many industrial and commercial sectors [49]-[51]. Indeed, 

PMDC motors are particularly useful for conveyor systems, industrial robots, and machine tools 

requiring variable speeds and precise movements, while enabling precise torque control [52], [53]. 

Thus, the results of simulations and experiments can be more easily applied to real industrial 

scenarios, such as robotic arms used in assembly, welding, or other repetitive tasks. Arduino controls 

the PMDC motors responsible for the articulated movements of the robot.  

The PID controller, optimized by the optimization algorithm, ensures smooth and precise 

movements by correcting position and speed errors in real-time. This process aims to improve the 

accuracy and repeatability of the tasks performed by the robot, thereby increasing the quality and 

speed of production. PID controllers are used in a wide range of industrial applications, making this 

study a solid foundation for understanding and improving the performance of practical control 

systems. Indeed, the use of PID controllers and PMDC motors in a simulation study on Arduino to 

compare the ACO, PSO, and FPA algorithms is justified by their simplicity, availability, and 

representativeness of real industrial systems. PMDC motors, in particular, offer considerable 

advantages in terms of precise control, reduced maintenance, and quick response, making them ideal 

for a multitude of industrial and experimental applications. To successfully complete this 

experimental section, Section 2 of the article, which corresponds to the methodology used, first 

describes the ACO, PSO, and FPA optimization algorithms to provide a clear understanding of these 

algorithms. Next, it outlines the basic principles for implementing these algorithms and controlling 

a PMDC motor through the L298n driver on an Arduino Mega 2560 board. The following step 

involves using MATLAB/Simulink for identifying the transfer function of the PMDC motor.  



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

1189 
Vol. 4, No. 3, 2024, pp. 1186-1206 

  

 

Adil Najem (Simulation and Arduino Hardware Implementation of ACO, PSO, and FPA Optimization Algorithms for 

Speed Control of a DC Motor) 

 

To better understand the other sections and the importance of these algorithms in the control of 

PMDC motors, our article highlights their utility by organizing our work into four sections: Section 

2 describes the methods used, Section 3 simulates the algorithms with MATLAB/Simulink, Section 

3 implements the algorithms on Arduino Mega, and Section 4 presents the conclusion of our study. 

2. Method 

 Ant Colony Optimizations 

[32] ACO is an optimization algorithm based on the behavior of ants searching for optimal paths 

between their colony and a food source. Inspired by real ant behavior, ACO uses an iterative process 

where artificial ants deposit "pheromones" along explored paths. Paths with stronger pheromones 

become more attractive to other ants, promoting the exploration of promising solutions. Over time, 

this algorithm converges towards optimal or near-optimal solutions. 

For an ant k located at node i, the probability of choosing to move towards another node in the 

network is given by the following relationship: 
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Where 𝜏𝑖𝑗
𝑘  represents the pheromone levels for ant k at node 𝑖, where the denominator is a summation 

to encompass all potential paths, with 𝑁𝑖
𝑘denoting the set of possible trails for ant 𝑘 when located at 

node 𝑖. 

Parameters 𝛼 and 𝛽 influence the pheromone evaporation process and the behavior of ants. 

Specifically, 𝛼 regulates the significance of pheromone quantity in ant decision-making for their 

subsequent steps. Conversely, 𝛽 governs the importance of heuristic information in the decision-

making process. A higher 𝛼 accentuates the impact of pheromone quantity, while a higher β 

emphasizes the significance of heuristic information. Conversely, lower α values reduce the influence 

of pheromone, promoting exploration of new paths, whereas lower 𝛽 values increase reliance on 

heuristic information. 

The selection of 𝛼 and 𝛽 is contingent upon the desired convergence speed of ants toward an 

optimal solution. These values aim to strike a balance between exploration (seeking new paths) and 

exploitation (utilizing known information). 

 𝜏𝑖𝑗  ⃪(1 − 𝜌)𝜏𝑖𝑗  𝑎𝑣𝑒𝑐  0≤𝜌≤1 (2) 

Where 𝜂𝑖𝑗
𝑘  heuristic information (visibility), 𝜌 is the percentage of pheromone vaporization 

(evaporate rate). When ants traverse a path, the pheromone levels are updated as follows: 

 
𝜏𝑦 ⃪𝜏𝑦 + ∑ ∆𝜏𝑦

𝑘        

𝑚

𝑘=1

 (3) 

With 

 
  ∆𝜏𝑖𝑗

𝑘 =
1

𝐶𝑘 (4) 

The reward for ant k is linked to 𝐶𝑘  for choosing this path. 

The optimal selection of Ki, KP and Kd ensures that the objective function ITAE (Integral of 

Time-weighted Absolute Error) is minimized: 
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𝐼𝑇𝐴𝐸 =  ∫ 𝑡|𝑒|𝑑𝑡

𝑡

0

 (5) 

Where 𝜁 is a parameter introduced to reinforce pheromone levels as ants approach optimal solutions. 

To use ACO, we must proceed with the following steps: 

• Step 1: Define a search space that includes the possible solutions for the optimization parameters 

Ki, KP and Kd.  

• Step 2: Initialize the number of ants and iterations, and set all discrete values in the search space 

to the same initial pheromone value 𝜏. 

• Step 3: Calculate the probability (1). Choose 𝛼 and β; in our case, 𝛼 = 1 and 𝛽 = 0 provide a 

good balance between exploration and exploitation.         

• Step 4: For each ant, determine Ki, KP and Kd for this we must identify the best value 𝑓𝑏𝑒𝑠𝑡 the 

worst value  𝑓𝑤𝑜𝑟𝑠𝑡  based on the objective function ITAE. 

• Step 5: Repeat the same procedure for several iterations 

Pheromone should be added for 𝑓𝑏𝑒𝑠𝑡  

    𝜏𝑗
𝑛𝑒𝑤 = 𝜏𝑗

𝑜𝑙𝑑 + ∑ ∆𝜏𝑗
(𝑘)

𝑘

 (6) 

Reduced for  𝑓𝑤𝑜𝑟𝑠𝑡 . 

   𝜏𝑗
𝑛𝑒𝑤 = (1 − 𝜌)𝜏𝑗

𝑜𝑙𝑑 (7) 

Fig. 1 outlines the steps to obtain the optimal solution in the form of a flowchart. 

The parameter adjustment phase is very complex and requires several attempts to find the right 

settings. For ACO, choosing a larger population N (number of ants in the colony) can explore more 

of the search space but increases computation time. It is wise to start with a moderate number and 

adjust based on the complexity of the problem and available computational resources. 

Similarly, increasing the number of iterations allows for more thorough exploration and 

refinement but requires more time. To adjust this parameter, it is best to determine it based on the 

convergence rate observed during initial trials. If improvements slow significantly, consider stopping 

earlier. 

Start with 𝛼 =  1. Adjust upwards if the algorithm converges too slowly and downwards if it 

converges too quickly and lacks exploration. Next, start with 𝛽 =  2. Increase it if the problem has 

strong heuristic information and decrease it if the heuristic information is less reliable. Typical values 

for the evaporation rate (𝜌) range from 0.1 to 0.7. Adjust based on the required balance between 

exploration and exploitation. 

For the pheromone reinforcement coefficient (𝜁), generally use small reinforcement values 

initially and adjust based on observed performance. 

 Particle Swarm Optimization 

PSO is an optimization algorithm based on the behavior of flocks of birds or swarms of insects. 

In PSO, a population of potential solutions, called "particles," is iteratively improved by moving 

through the search space based on their own experience and that of their neighbors. Each particle has 

a position and a velocity in the search space. The particles adjust their velocity and position based on 

the performance of the best solutions found by themselves and their neighbors. PSO is often used for 
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continuous or discrete optimization problems and is known for its conceptual simplicity and ease of 

implementation. To use PSO, we must proceed with the following steps: 

 

Fig. 1. Flowchart for ACO algorithm 

Step 1:  

• Initial population (number of particles N) 

• Initial position (𝑥) and velocity (𝑣) 

• Assign 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡  

With  𝑝𝑏𝑒𝑠𝑡: local optimal solution and 𝑔𝑏𝑒𝑠𝑡: global optimal solution. 

Step 2: Update velocity and position of each particle 

 𝑣𝑖(𝑡) = 𝜃𝑣𝑖(𝑡 − 1) + 𝑐1𝑟1 (𝑝𝑏𝑒𝑠𝑡,𝑖 − 𝑥𝑖(𝑡 − 1)) + 𝑐2𝑟2 (𝑔𝑏𝑒𝑠𝑡,𝑖 − 𝑥𝑖(𝑡 − 1)) (8) 
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 𝑥𝑖(𝑡) = 𝑥𝑖(𝑡 − 1) + 𝑣𝑖(𝑡) (9) 

With: 𝜃 is inertia weight, 𝑐1𝑎𝑛𝑑 𝑐2 are individual and social cognitive, 

𝑟1 𝑎𝑛𝑑 𝑟2 are uniformly distributed random numbers in the rang (0,1). 

Step 3: Evaluate the objective function ITAE and update  𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡. 

Step 4: Repeat the same procedure for several iterations. 

[34] The flowchart provides an overview of the steps to optimize using PSO Fig. 2. 

 

Fig. 2. Flowchart for PSO algorithm 

To adjust the PSO parameters, the number of particles and iterations should be moderate at the 

beginning. 

Start with the cognitive parameter (C1), which influences the personal experience of each 

particle in updating its position. Higher values increase the importance of the individual component, 

favoring exploration. Adjust (C1) based on the need for individual exploration. 

Next, adjust the social parameter (C2), which influences the collective experience of the group 

of particles in updating their positions. Adjust (C2) based on the need for collective exploration. 
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Finally, the inertia weight (θ) influences the previous velocity of a particle on its current 

velocity. Typical values range from 0.4 to 0.9. A decreasing inertia weight, which diminishes over 

iterations, is often used to balance exploration and exploitation. 

 Flower Pollination Algorithm 

FPA is a bio-inspired optimization algorithm based on the process of flower pollination in 

nature. In FPA, each potential solution is considered as a "flower," and the pollination processes 

between flowers are simulated to search for optimal solutions. Flowers attract pollinators (such as 

bees, butterflies, etc.) by releasing attractive chemical substances. These pollinators carry pollen 

between flowers, facilitating reproduction and diversification of plant species. In FPA, solutions are 

updated based on the quality of flowers and interactions between them. FPA is often used for 

continuous and discrete optimization problems and is appreciated for its simplicity and robustness. 

[54] The following steps describe the FPA algorithm: 

a) Step1:  

• Initialize the population of flowers (N) based on the following equation: 

 𝑋𝑖 = 𝐿𝑏 + 𝑅𝑎𝑛𝑑 × (𝑈𝑏 − 𝐿𝑏) (10) 

Where  [𝐿𝑏,𝑈𝑏]is the search space for optimal solutions. 

• Determine the objective function for each flower, then select the flower for the best solution 𝑋𝑔. 

b) Step 2: Select a random number (Rand) for each flower, if the number is less than the probability 

𝜌, then generate a step 𝜎 and apply global pollination. 

 𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝜎(𝑋𝑖
𝑡 − 𝑋𝑔) (11) 

Where 𝑋𝑖
𝑡  is the pollen i or the solution vector 𝑋𝑖   at the 𝑡𝑡ℎ iteration. 

𝑋𝑔: the current best solution among the current options in the current iteration. 

c) Step 3: For numbers greater than the probability ρ, apply local pollination. 

 𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝜖(𝑋𝑗
𝑡 − 𝑋𝑘

𝑡 ) (12) 

Where 𝑋𝑗
𝑡 , 𝑋𝑘

𝑡  represent the pollens of different flowers of the same species. 𝜖 belongs to the interval 

[0,1]. 

d) Step 4: In case the new solutions are more promising, they should be replaced and repeat the 

steps for all populations to find the current solution. 

To adjust the FPA parameters, start with moderate values for the population size and the number 

of iterations. Then, adjust according to the need for global exploration (p) or local exploration (1-p). 

If the algorithm converges too slowly, increase (p). If the algorithm converges too quickly without 

finding good solutions, decrease (p). Fig. 3 represents the flowchart that describes the steps to follow 

to achieve an optimal solution. 

 PID Controller 

PID Controller One of the key objectives of this study is to optimize the performance of the PID 

controller by determining coefficients that ensure optimal rise time, settling time, overshoot, and 

accuracy. To achieve this, we have chosen to use three optimization algorithms: ACO, PSO, and 

FPA. These algorithms aim to adjust the parameters of the PID, whose transfer function is as follows: 

 𝑈(𝑠)

𝐸(𝑠)
= 𝑘𝑝 +

𝑘𝑖

𝑠
+ 𝑘𝑑𝑠 (13) 
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With 𝑘𝑝 representing the proportional coefficient, 𝑘𝑖  the integral coefficient, 𝑘𝑑 the derivative 

coefficient, 𝑈 the control signal, and E the error between the actual value and the setpoint. 

 

Fig. 3. Flowchart for FPA algorithm [47] 

Fig. 4 depicts the functional diagram of a speed control system for a PMDC motor using an 

Arduino Mega 2560 board. In this system, a PID controller optimized by optimization algorithms is 

implemented on real hardware. The Arduino board sends a Pulse Width Modulation (PWM) signal 

to the L298n driver, which in turn provides an optimal voltage to the PMDC motor to track the speed 

setpoint. A Hall effect speed sensor sends pulses to the Arduino board via a feedback loop, allowing 

the board to convert them into a numeric value expressing the speed in revolutions per minute (RPM). 

The error is deduced by subtracting the speed expressed in RPM from the setpoint. 

 

Fig. 4. Block diagram of a speed control 

 et point    

 nterrupt
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 Identification 

To validate these optimization algorithms and determine the coefficients of the PID controller, 

we need to go through the model identification process using the MATLAB Identification Toolbox, 

which provides a series of powerful tools for identifying models of dynamic systems from 

experimental data. This process involves estimating the parameters of a mathematical model using 

measurements or observations from the real system. 

We will model the transfer function of the PMDC motor and the L298N driver. To do this, we 

will create a model in MATLAB/Simulink that will be implemented on Arduino. This model will 

take input from the Hall effect speed sensor pulse and produce a PWM signal as output. 

Subsequently, measurements of different speed values for various duty cycle settings are sent to 

MATLAB, as shown in Fig. 5 and Fig. 6. 

 

Fig. 5. Block diagram of the identification function 

 

Fig. 6. Block diagram of the identification function in MATLAB/Simulink 

Block 1 sends a PWM signal through pin 5 of the Arduino board to the L298n driver, which in 

turn sends a PWM signal to the PMDC motor. Block 2 enables the acquisition of pulses generated 

by the speed sensor, connected to interrupt pin 2 of the Arduino. This block also detects rising edges 

and converts them into integer values. Block 3, illustrated in Fig. 7, calculates the speed in RPM. To 

do this, we first count the detected pulses by incrementing a counter at each detected rising edge.                

We then consider only the last 100 samples. At this stage, we have the number of pulses, but to 

convert it to RPM, we use the following formula: 

 
𝑅𝑃𝑀 =

𝑁 × 1000 × 60

𝑇 × 𝑃
 (14) 

 rduino  ega  otor  river  C  otor

 ncoder  ensor

      

 nterrupt

      

 peed

 ia    
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Where 𝑁 represents the number of counted pulses, 𝑇 is the time required to count the 100 samples, 

and P is the number of points per revolution of the sensor. This formula is represented as a block in 

Fig. 7. 

 

Fig. 7. Diagram for reading speed in RPM in MATLAB/Simulink 

The core principle of system identification revolves around deriving an approximate 

mathematical pattern based on collected experimental data, representing the system's input and 

output. In MATLAB, this procedure can be facilitated using one of the software's built-in toolboxes, 

as depicted in Fig. 8. This toolbox comprises various functions tailored for the system identification 

process, including preprocessing and estimation. Users can import experimental data directly into 

the toolbox's interface and choose the mathematical operations required for the system identification 

algorithm. Additionally, the toolbox offers functions to analyze the performance of the estimated 

system model, rendering it a comprehensive solution for system identification tasks. 

 

Fig. 8. MATLAB system identification toolbox 

After collecting the data (duty cycle and speed) and storing it in MATLAB's Workspace, we use 

the System Identification Toolbox to estimate the transfer function of the system to be controlled. 

Multiple attempts are necessary to achieve a good estimation of the transfer function. The results of 

this estimated transfer function are then compared in a closed-loop simulation against real-world 

operations using the actual system. Adjusting the transfer function derived from the toolbox is 

essential to closely match the real-world behavior. The transfer function of the PMDC deduced from 

the identification box is: 

 700.3

𝑠2 + 25.11𝑠 + 12
 (15) 
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3. Simulation 

The simulation in MATLAB aims to determine the optimal coefficients of the PID controller 

using optimization algorithms (ACO, PSO, and FPA) based on the transfer function deduced from 

the identification tool. Fig. 9 illustrates the work carried out in MATLAB/Simulink. 

 

Fig. 9. Block diagram of PID control with optimization algorithms 

Table 1, Table 2, and Table 3 elucidate the parameters of the algorithms (ACO, PSO, and FPA) 

used to determine the optimized coefficients 𝑘𝑝, 𝑘𝑖  𝑎𝑛𝑑 𝑘𝑑 to achieve a minimal ITAE objective 

function. 

Table 1.  ACO Parameter values 

Description and Symbol Values 

Population size(N) 100 
Maximum number of iteration (Iter) 120 

 lpha(α) 1 

 eta(β) 0 

Evaporation rate(ρ) 0.6 
Step to obtain an optimal solution(h) 0.01 

Reinforce pheromone(ζ) 2 

Table 2.  PSO Parameter values 

Description and Symbol Values 

Population size(N) 80 

Maximum number of iteration (Iter) 90 

Cognitive Parameter(C1) 2 
Social parameter(C2) 2 

Table 3.  FPA Parameter values 

Description and Symbol Values 

Population size(N) 80 
Maximum number of iteration (Iter) 100 

Probability of switching (p) 0.7 

 

Fig. 10 compares the performance of three algorithms: ACO, FPA, and PSO. The PSO algorithm 

shows a response time of 0.768s, a rise time of 0.102s, and an overshoot of 13%. In comparison, the 

FPA algorithm exhibits a faster response time at 0.347s with an overshoot of 6.4%, which is better 

than PSO in certain aspects. On the other hand, ACO achieves a response time of 0.322s with an 
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overshoot of only 0.68%, demonstrating its efficiency compared to the other two algorithms (PSO 

and FPA). 

Although ACO has proven effective in optimization compared to PSO and FPA, it requires more 

time and its numerous parameters make the choice of values more complex. In comparison, PSO and 

FPA are easier to manage due to their simplicity and fewer parameters. 

 

Fig. 10.  Speed response by MATLAB/Simulink 

Table 4 summarizes the performance obtained using the three optimization algorithms. 

Table 4.  Results of simulation of PSO, FPA and ACO 

Method 
PID Controller Parameters 

Rise 

Time 

tr (sec) 

Settling 

Time 

ts (sec) 

Overshoot 

 

MP (%) 𝑘𝑝 𝑘𝑖 𝑘𝑑 

PSO 4.5 6.48 0.03 0.102 0.768 13 
FPA 3 1.758 0.000127 0.138 0.347 6 

ACO 8 2 0.4 0.196 0.322 0.68 

4. Experimentation 

In this practical phase, we will test these optimization coefficients on real hardware by 

integrating them into the embedded controller of an Arduino Mega board. The part implemented on 

Arduino is illustrated in Fig. 11 and Fig. 12. as well as the PMDC motor with characteristics 

mentioned in Table 5. 

 

Fig. 11. Experimental work illustration 
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Table 5.  Parameters and corresponding values of PMDC 

Parameter and Symbol Values 

Moment of Inertia (𝐽) 19e-7𝑘𝑔. 𝑚2 

Friction coefficient (𝑓) 52.77e-6N.ms 

Back EMFconstant(𝑘𝑒) 0.0229V/rad. 𝑠−1 

Torque constant (𝑘𝑡) 0.0214N.m/A 

Electric resistance(R) 8Ω 

Armature inductance(L) 10e-03H 

 

 

Fig. 12. Block diagram of a speed control in MATLAB/Simulink 

This practical phase will allow us to effectively evaluate the comparison between the three 

algorithms (ACO, PSO, and FPA), taking into account all nonlinearities and uncertainties of all 

components in the control chain. 

To start with, we tested the following optimization coefficients:    𝑘𝑝=2.5, 𝑘𝑖=2, and 𝑘𝑑=0.4, 

which are very close to those of ACO with a set point of 1600 rpm. Fig. 13 shows the motor speed, 

which exhibits fluctuations that could affect speed control. Therefore, we decided to use a low-pass 

filter, whose cutoff frequency was adjusted through trial and error. Additionally, we made slight 

modifications to the optimization coefficients (𝑘𝑝=3, 𝑘𝑖=2, and 𝑘𝑑=0.4) since the identified function 

represents an approximation of the system. Fig. 14 illustrates the adjustments made to the control 

system and the positive effect of the low-pass filter on motor speed. Speed sensors can be affected 

by electrical noise and other disturbances, creating rapid and erratic fluctuations in the speed signal. 

The low-pass filter attenuates the high-frequency components of the speed measurement signal, 

reducing noise and providing a cleaner signal for the PID controller. A more stable speed 

measurement allows the PID controller to operate more effectively, improving the accuracy and 

stability of speed control. 

Integrating a low-pass filter in the speed control of a PMDC motor offers significant advantages 

in terms of noise reduction, improved stability, and reduced mechanical wear. However, it is crucial 

to manage the delays introduced by the filter and choose an appropriate cutoff frequency to balance 

noise reduction and system responsiveness. By adopting an experimental and iterative approach, it 

is possible to leverage the benefits of filtering while minimizing its drawbacks. 

Based on the optimization coefficients obtained through the iterations using the algorithms 

(ACO, PSO, and FPA) in MATLAB/Simulink, we were able to control the speed of the PMDC on 

real hardware, with some adjustments to kp, ki, and kd considering that the transfer function in 

MATLAB is an approximation of the real system. Fig. 15 highlights this control, and Table 4 

summarizes the control performance. 



1200 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 4, No. 3, 2024, pp. 1186-1206 

 

 

Adil Najem (Simulation and Arduino Hardware Implementation of ACO, PSO, and FPA Optimization Algorithms for 

Speed Control of a DC Motor) 

 

 

Fig. 13. Speed response by hardware without low-pass filter 

 

Fig. 14. Speed response by hardware with low-pass filter 

 

Fig. 15. Speed response by hardware of ACO, PSO and FPA 
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The results of the experiment show a close correlation between the simulation results and those 

obtained through PSO optimization. The system optimized by PSO demonstrates a response time of 

0.753 seconds, an overshoot of 19%, and a rise time of 0.204 seconds. In comparison, using FPA 

yields a response time of 0.644 seconds with an overshoot of only 0.81%. These performances are 

remarkably close to those achieved with ACO, which shows a response time of 0.596 seconds and 

an overshoot of 1.68%. Table 6 shows these results. 

Table 6.  Comparative performance of PSO, FPA and ACO 

 

Method 

PID Controller Parameters Rise Time 

tr (sec) 

Settling Time 

ts (sec) 

Overshoot 

MP (%) 𝐤𝐩 𝐤𝐢 𝐤𝐝 

PSO 1.6 6.48 0.1 0.204 0.753 19 

FPA 0.95 1.758 0.000127 0.520 0.644 0.81 

ACO 4.2 2 0.4 0.534 0.596 1.68 

 

The ACO algorithm exhibits lower overshoot and a reduced response time compared to PSO, 

but is relatively close to FPA. A possible explanation is that ACO is known for its good balance 

between exploration and exploitation. The ants deposit pheromones that guide the search for 

solutions while exploring new possibilities. This balance allows ACO to find optimal solutions 

quickly and stably, which can explain the low overshoot and rapid response time. Additionally, ACO 

enables dynamic adaptation based on pheromones, helping to avoid suboptimal solutions and 

converge more quickly to an effective solution. 

PSO focuses heavily on exploiting the best solutions found by the particles, which can result in 

higher overshoot if the particles prematurely converge on a local suboptimal solution. This can also 

lengthen the response time when adjustments are needed to move away from these local solutions. 

FPA uses both global and local pollination strategies, allowing it to balance exploration and 

exploitation well. The similar results between ACO and FPA suggest that both algorithms effectively 

manage the balance between exploring new solutions and exploiting known ones. 

Table 7 consolidates the simulation and experimental sections. This comparison helps to better 

understand the performance differences between the simulation and experimental setups and to 

closely examine the causes of these result discrepancies. 

Table 7.  Simulation and experimentation results 

Method 
PID Controller Parameters Rise Time 

tr (sec) 

Settling Time 

ts (sec) 

Overshoot 

MP (%) 𝐤𝐩 𝐤𝐢 𝐤𝐝 

PSO (experimental) 1.6 6.48 0.1 0.204 0.753 19 
PSO 

(simulation) 
4.5 6.48 0.03 0.102 0.768 13 

FPA (experimental) 0.95 1.758 0.000127 0.520 0.644 0.81 

FPA 
(simulation) 

3 1.758 0.000127 0.138 0.347 6 

ACO (experimental) 4.2 2 0.4 0.534 0.596 1.68 

ACO 
(simulation) 

8 2 0.4 0.196 0.322 0.68 

 

Several factors explain the differences between simulation and experimental results: 

• Latency and Response Time: Calculation and response times in a simulation environment are 

often ideal and without latency. On an Arduino board, processing times can introduce delays 

that affect the PID control performance. 

• Noise and Disturbances: Simulations may neglect or minimize the impact of noise and 

disturbances on the sensors and the L298n driver. In practice, electrical noise, mechanical 

vibrations, and other disturbances can degrade control accuracy. 
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• Sensor Resolution and Accuracy: Sensors in simulations can be modeled with ideal precision. 

In reality, sensors have limitations in terms of resolution and accuracy, which can affect PID 

performance. 

• Hardware Limitations: Simulations do not always account for the hardware limitations of the 

Arduino and peripheral components. Power constraints, processing capacity, and limited 

memory can impact PID control performance. 

• Non-linearities and Saturation: Simulations may not capture all system non-linearities or the 

effects of saturation in switches. In practice, PMDC motors may exhibit non-linear behaviors 

and reach saturation limits that degrade performance. 

Based on this experiment, the choice of the FPA and ACO algorithms is justified over the PSO 

approaches. Additionally, FPA has the advantage of being simpler to use, with fewer parameters to 

adjust.  

This article can lead us towards a potential research avenue, such as a hybrid FPA-ACO 

algorithm, by leveraging the strengths of both algorithms. The global search capability of FPA to 

avoid local minima, combined with ACO's ability to refine solutions through pheromone-guided 

search, potentially leads to faster and more precise convergence, making it a promising solution for 

complex control tasks. 

5. Conclusion 

This study highlights the importance of comparing optimization algorithms to help researchers 

select the most suitable one for a given situation. The experimental results show that the ACO 

algorithm, with a response time of 0.596s and an overshoot of 1.68%, and the FPA algorithm, with 

a response time of 0.644s and an overshoot of 0.81%, are more effective in tuning PID parameters 

to achieve reduced response times, minimal overshoot, and increased accuracy in controlling the 

speed of the PMDC compared to the PSO algorithm. Although the performance obtained with PSO-

optimized PID parameters is acceptable, with a response time of 0.768s and an overshoot of 19%, 

the results of FPA and ACO are similar. However, FPA is preferable to ACO due to its simplicity 

and faster implementation. These findings can be beneficial for applications similar to our study, 

such as robotic arms used in assembly, welding, or other repetitive tasks, and industrial pumps used 

for fluid transfer in manufacturing processes.  

The practical part addressed the speed ripples, which have very direct consequences on the 

motor and control accuracy, by mitigating them with a low-pass filter in the feedback loop, while 

managing the delays introduced by the filter and choosing the appropriate cutoff frequency to balance 

noise reduction and system responsiveness.  

We plan to extend this study to more complex nonlinear systems to evaluate the limits and 

effectiveness of each algorithm, also incorporating a practical component into our approach. 

 

Author Contribution: Adil Najem: Conceptualization, methodology, experimentation. Ahmed Moutabir: 

Writing, preparation of the original version. Abderrahmane Ouchatt: Supervision. 

Funding: No external funding was allocated to this research.  

Acknowledgments: We express our gratitude to the members and leaders of the “ aboratory  . . . . . . ” 

for their insightful comments and clear-sighted recommendations.  

Conflicts of Interest: The authors certify the absence of known conflicting financial interests or personal 

relationships that could have influenced their work presented in this article. 

 



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

1203 
Vol. 4, No. 3, 2024, pp. 1186-1206 

  

 

Adil Najem (Simulation and Arduino Hardware Implementation of ACO, PSO, and FPA Optimization Algorithms for 

Speed Control of a DC Motor) 

 

Link to the Video Showing Part of the Experiment: 

youtu.be/MNiM9PGHX1s?si=Jnk7FGNCSR0FWrJt  

References 

[1] V. Kumarasamy, V. KarumanchettyThottam Ramasamy, G. Chandrasekaran, G. Chinnaraj, P. 

 ivalingam, and  .  . Kumar, “  review of integer order     and fractional order     controllers using 

optimization techniques for speed control of brushless  C motor drive,” International Journal of System 

Assurance Engineering and Management, vol. 14, pp. 1139-1150, 2023, https://doi.org/10.1007/s13198-

023-01952-x. 

[2] S. B. Joseph,  .  benga  ada,  .  bidemi,  .  peoluwa  yewola, and  . Khammas, “ etaheuristic 

algorithms for     controller parameters tuning: review, approaches and open problems,” Heliyon, vol. 

8, no. 5, p. E09399, 2022, https://doi.org/10.1016/j.heliyon.2022.e09399. 

[3]  . Kumar and  .  .  andal, “ ressure control of fixed displacement variable speed radial piston pump 

using     controller,” Materials Today Proceedings, vol. 56, pp. 1840-1846, 2022, 

https://doi.org/10.1016/j.matpr.2021.11.034. 

[4] M. Z. B. A. Karim, and N. M. Thamrin, “ ervo  otor Controller using     and  raphical  ser  nterface 

on  aspberry  i for  obotic  rm,” Journal of Physics: Conference Series, vol. 2319, no. 1, p. 012015, 

2022, https://doi.org/10.1088/1742-6596/2319/1/012015. 

[5]  .  ahyudie,  .  .  usilo, C.  .  .  andar,  . Fayez, and  .  rrouissi, “ imple  obust      uning for 

Magnetic Levitation Systems Using Model-free Control and ℋ∞ Control  trategies,” International 

Journal of Control, Automation and Systems, vol. 19, pp. 3956-3966, 2021, 

https://doi.org/10.1007/s12555-020-0253-8. 

[6]  . Kadry and  .  ajinikanth, “ esign of     Controller for  agnetic  evitation  ystem using  arris 

Hawks Optimization,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 6, no. 2, pp. 70-78, 

2020, http://dx.doi.org/10.26555/jiteki.v6i2.19167. 

[7]  .  akria,  .  zzouzi, and  .  ozim, “Chaos Control and Stabilization of a PID Controlled Buck 

Converter  sing the  potted  yena  ptimizer,” Engineering, Technology and Applied Science Research, 

vol. 11, no. 6, pp. 7922-7926, 2021, https://doi.org/10.48084/etasr.4585. 

[8]  .  zci,  .  ekimoğlu, and  .  kinci, “  new artificial ecosystem-based optimization integrated with 

Nelder- ead method for     controller design of buck converter,” Alexandria Engineering Journal, vol. 

61, no. 3, pp. 2030-2044, 2022, https://doi.org/10.1016/j.aej.2021.07.037. 

[9]  .  aszak and  . Łangowski, " n  utomatic  elf-Tuning Control System Design for an Inverted 

Pendulum," IEEE Access, vol. 8, pp. 26726-26738, 2020, 

https://doi.org/10.1109/ACCESS.2020.2971788. 

[10] M. F. Q. Say, E. Sybingco, A. A. Bandala, R. R. P. Vicerra and A. Y. Chua, "A Genetic Algorithm 

Approach to PID Tuning of a Quadcopter UAV Model," 2021 IEEE/SICE International Symposium on 

System Integration (SII), pp. 675-678, 2021, https://doi.org/10.1109/IEEECONF49454.2021.9382697. 

[11] R. Khandait, V. Kumar, V. Bhurse, V. Tiwari and S. Khubalkar, "Quadcopter Control using Different 

Controllers," 2022 International Conference on Intelligent Controller and Computing for Smart Power 

(ICICCSP), pp. 1-6, 2022, https://doi.org/10.1109/ICICCSP53532.2022.9862416. 

[12]  .  hmmed,  .  khter,  .  .  . Karim, and F.  .  .  hamed, “ enetic  lgorithm Based PID Parameter 

 ptimization,” American Journal of Intelligent Systems, vol. 10, no. 1, pp. 8-13, 2020, 

https://doi.org/10.5923/j.ajis.20201001.02. 

[13] Y.  ong, C. Fu, and  .  erci, “ ptimization and determination of the parameters for a     based 
ventilation system for smoke control in tunnel fires: Comparative study between a genetic algorithm and 

an analytical trial-and-error method,” Tunnelling and Underground Space Technology, vol. 136, p. 

105088, 2023, https://doi.org/10.1016/j.tust.2023.105088. 

[14] D. Baidya, S. Dhopte and M. Bhattacharjee, "Sensing System Assisted Novel PID Controller for Efficient 

Speed Control of DC Motors in Electric Vehicles," IEEE Sensors Letters, vol. 7, no. 1, pp. 1-4, 2023, 

https://doi.org/10.1109/LSENS.2023.3234400. 

youtu.be/MNiM9PGHX1s?si=Jnk7FGNCSR0FWrJt
https://doi.org/10.1007/s13198-023-01952-x
https://doi.org/10.1007/s13198-023-01952-x
https://doi.org/10.1016/j.heliyon.2022.e09399
https://doi.org/10.1016/j.matpr.2021.11.034
https://doi.org/10.1088/1742-6596/2319/1/012015
https://doi.org/10.1007/s12555-020-0253-8
http://dx.doi.org/10.26555/jiteki.v6i2.19167
https://doi.org/10.48084/etasr.4585
https://doi.org/10.1016/j.aej.2021.07.037
https://doi.org/10.1109/ACCESS.2020.2971788
https://doi.org/10.1109/IEEECONF49454.2021.9382697
https://doi.org/10.1109/ICICCSP53532.2022.9862416
https://doi.org/10.1016/j.tust.2023.105088
https://doi.org/10.1109/LSENS.2023.3234400


1204 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 4, No. 3, 2024, pp. 1186-1206 

 

 

Adil Najem (Simulation and Arduino Hardware Implementation of ACO, PSO, and FPA Optimization Algorithms for 

Speed Control of a DC Motor) 

 

[15] A. A. Abd Samat, M. A. Subani, N. F. Ab Aziz, N. A. Salim, K. Daud and A. I. Tajudin, "PSO-Based PI 

Controller for Speed Control Of DC Motor," 2022 IEEE International Conference on Power and Energy 

(PECon), pp. 481-486, 2022, https://doi.org/10.1109/PECon54459.2022.9988840. 

[16] F. Z. Baghli, Y. Lakhal, and Y. A. E. Kadi, “ he  fficiency of an  ptimized     Controller  ased on 

Ant Colony Algorithm (ACO-PID) for the Position Control of a Multi-articulated  ystem,” Journal of 

Robotics and Control, vol. 4, no. 3, pp. 289-298, 2023, https://doi.org/10.18196/jrc.v4i3.17709. 

[17]  .  u,  .  iu, Q. Cui, X.  a, and  .  ang, “    Controller  arameter  ptimized by  eformative 

 rtificial  ee Colony  lgorithm,” Journal of Mathematics, vol. 2022, no. 1, pp. 1-16, 2022, 

https://doi.org/10.1155/2022/3826702. 

[18] A. I. Tajudin, M. A. D. Izani, A. A. A. Samat, S. Omar and M. A. M. Idin, "Design a Speed Control for 

DC Motor Using an Optimal PID Controller Implementation of ABC Algorithm," 2022 IEEE 12th 

International Conference on Control System, Computing and Engineering (ICCSCE), pp. 97-102, 2022, 

https://doi.org/10.1109/ICCSCE54767.2022.9935644. 

[19] Y.  uthalapati and  .  .  . K.  aidu, “   ovel  odulating     Controller for a  peed Control of    C 
 otor  dopting Flower  ollination  lgorithm,” Intelligent Computing in Control and Communication, 

vol. 702, pp. 159-168, 2021, https://doi.org/10.1007/978-981-15-8439-8_14. 

[20] T. Chiranjeevi et al., “Control of electric machines using flower pollination algorithm based fractional 

order     controller,” Global Transitions Proceedings, vol. 2, no. 2, pp. 227–232, 2021, 

https://doi.org/10.1016/j.gltp.2021.08.057. 

[21] D. Guha, P. K. Roy, S. Banerjee, S. Padmanaban, F. Blaabjerg and D. Chittathuru, "Small-Signal Stability 

Analysis of Hybrid Power System With Quasi-Oppositional Sine Cosine Algorithm Optimized Fractional 

Order PID Controller," IEEE Access, vol. 8, pp. 155971-155986, 2020, 

https://doi.org/10.1109/ACCESS.2020.3018620. 

[22] P. Dutta and S. K.  ayak, “ rey  olf  ptimizer  ased     Controller for  peed Control of    C 

 otor,” Journal of Electrical Engineering & Technology, vol. 16, no. 2, pp. 955-961, 2021, 

https://doi.org/10.1007/s42835-021-00660-5. 

[23] J.  hookya,  .  ijaya Kumar, J.  avi Kumar, and  .  eshagiri  ao, “ mplementation of     controller 
for liquid level system using m    and integration of  o  application,” Journal of Industrial 

Information Integration, vol. 28, p. 100368, 2022, https://doi.org/10.1016/j.jii.2022.100368. 

[24]  .  .  ani,  .  aiful  slam, ·  uhammad, and  .  llah, “ ptimal     tuning for controlling the 
temperature of electric furnace by genetic algorithm,” SN Applied Sciences, vol. 1, no. 880, 2019, 

https://doi.org/10.1007/s42452-019-0929-y. 

[25] Y.  hou, J.  hang, X. Yang, and Y.  ing, “ ptimization of     Controller  ased on  ater Wave 

 ptimization for an  utomatic  oltage  egulator  ystem,” Information Technology and Control, vol. 

48, no. 1, pp. 160-171, 2019, https://doi.org/10.5755/j01.itc.48.1.20296. 

[26] B. N. Kommula and V. R. Kota, “Direct instantaneous torque control of Brushless DC motor using firefly 

Algorithm based fractional order PID controller,” Journal of King Saud University: Engineering 

Sciences,vol. 32, no. 2, pp.133-140, 2020, https://doi.org/10.1016/j.jksues.2018.04.007. 

[27] M. Ali, H. Suyono, M. A. Muslim, M. R. Djalal, Y. M. Safarudin, A. A. Firdaus, “ etermination of the 

parameters of the firefly method for PID parameters in solar panel applications,” Sinergi, vol. 26, no. 2, 

pp. 265-272, 2022, https://dx.doi.org/10.22441/sinergi.2022.2.016. 

[28] D. F. U. Putra, A. A. Firdaus, H. Arof, N. P. U. Putra, and V. A. Kusuma, “ mproved load frequency 

control performance by tuning parameters of     controller and      using  at algorithm,” Bulletin of 

Electrical Engineering and Informatics, vol. 12, no. 5, pp. 2624-2634, 2023, 

https://doi.org/10.11591/eei.v12i5.4548. 

[29] S. Tiacharoen, "Optimal Tuning of 2DOF-PID Controllers Using Bat Algorithm," 2023 7th International 

Conference on Information Technology (InCIT), pp. 388-391, 2023, 

https://doi.org/10.1109/InCIT60207.2023.10412900. 

[30] A. Loganathan and N. S. Ahmad, "Robot Path Planning via Harris Hawks Optimization: A Comparative 

Assessment," 2023 International Conference on Energy, Power, Environment, Control, and Computing 

https://doi.org/10.1109/PECon54459.2022.9988840
https://doi.org/10.18196/jrc.v4i3.17709
https://doi.org/10.1155/2022/3826702
https://doi.org/10.1109/ICCSCE54767.2022.9935644
https://doi.org/10.1007/978-981-15-8439-8_14
https://doi.org/10.1016/j.gltp.2021.08.057
https://doi.org/10.1109/ACCESS.2020.3018620
https://doi.org/10.1007/s42835-021-00660-5
https://doi.org/10.1016/j.jii.2022.100368
https://doi.org/10.1007/s42452-019-0929-y
https://doi.org/10.5755/j01.itc.48.1.20296
https://doi.org/10.1016/j.jksues.2018.04.007
https://dx.doi.org/10.22441/sinergi.2022.2.016
https://doi.org/10.11591/eei.v12i5.4548
https://doi.org/10.1109/InCIT60207.2023.10412900


ISSN 2775-2658 
International Journal of Robotics and Control Systems 

1205 
Vol. 4, No. 3, 2024, pp. 1186-1206 

  

 

Adil Najem (Simulation and Arduino Hardware Implementation of ACO, PSO, and FPA Optimization Algorithms for 

Speed Control of a DC Motor) 

 

(ICEPECC), pp. 1-4, 2023, https://doi.org/10.1109/ICEPECC57281.2023.10209484. 

[31]  .  kinci,  .  zci and  .  ekimoğlu, "     peed Control of  C  otor  sing  arris  awks Optimization 

Algorithm," 2020 International Conference on Electrical, Communication, and Computer Engineering 

(ICECCE), pp. 1-6, 2020, https://doi.org/10.1109/ICECCE49384.2020.9179308. 

[32] A. Najem,  .  outabir,  .  uchatti, and  .  l  aissouf, “ xperimental  alidation of the  eneration of 

Direct and Quadratic Reference Currents by Combining the Ant Colony Optimization Algorithm and 

 liding  ode Control in      using the  rocess    ,” International Journal of Robotics and Control 

Systems, vol. 4, no. 1, pp. 188-216, 2024, https://doi.org/10.31763/ijrcs.v4i1.1286. 

[33]  . Chauhan,  .  ingh, and  .  ingh, “ odified ant colony optimization based     controller design for 

coupled tank system,” Engineering Research Express, vol. 3, no. 4, p. 045005, 2021, 

https://doi.org/10.1088/2631-8695/ac2bf3. 

[34]  .  .  ahayu,  .  a’arif, and  . Cakan, “ article  warm Optimization (PSO) Tuning of PID Control on 

 C  otor,” International Journal of Robotics and Control Systems, vol. 2, no. 2, pp. 435-447, 2022, 

https://doi.org/10.31763/ijrcs.v2i2.476. 

[35] A. K. Kashyap and  .  .  arhi, “ article  warm  ptimization aided     gait controller design for a 

humanoid robot,” ISA Transactions, vol. 114, pp. 306-330, 2021, 

https://doi.org/10.1016/j.isatra.2020.12.033. 

[36]  .  uan and  . Yamamoto, “ esign of a  einforcement  earning     Controller,” IEEJ transactions on 

electrical and electronic engineering, vol. 16, no. 10, pp. 1354-1360, 2021, 

https://doi.org/10.1002/tee.23430. 

[37] A. Najem, A. Moutabir, M. Rafik and A. Ouchatti, "Comparative Study of PMSM Control Using 

Reinforcement Learning and PID Control," 2023 3rd International Conference on Innovative Research 

in Applied Science, Engineering and Technology (IRASET), pp. 1-5, 2023, 

https://doi.org/10.1109/IRASET57153.2023.10153024. 

[38]  .  ladipo, Y.  un,  .  ang, “ ptimization of     Controller with Metaheuristic Algorithms for DC 

 otor  rives:  eview,” International Review of Electrical Engineering, vol. 15, no. 5, pp. 352-381, 2020, 

https://doi.org/10.15866/iree.v15i5.18688. 

[39] X. Zhang and Q. Zhang, "Optimization of PID Parameters Based on Ant Colony Algorithm," 2021 

International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), pp. 850-853, 

2021, https://doi.org/10.1109/ICITBS53129.2021.00211. 

[40] A. Abushawish, M. Hamadeh, A. B. Nassif, “    Controller  ains  uning  sing  etaheuristic 

 ptimization  ethods:   survey,” International Journal of Computers, vol. 14, pp. 87-95, 2020, 

https://doi.org/10.46300/9108.2020.14.14. 

[41] M. Sreejeth, R. Kumar, N. Tripathi and P. Garg, "Tuning A PID Controller using Metaheuristic 

Algorithms," 2023 8th International Conference on Communication and Electronics Systems (ICCES), 

pp. 276-282, 2023, https://doi.org/10.1109/ICCES57224.2023.10192687. 

[42] M. V. D. Rocha, L. P. Sampaio and S. A. O. D. Silva, "Comparative Analysis of ABC, Bat, GWO and 

PSO Algorithms for MPPT in PV Systems," 2019 8th International Conference on Renewable Energy 

Research and Applications (ICRERA), pp. 347-352, 2019, 

https://doi.org/10.1109/ICRERA47325.2019.8996520. 

[43] T. O. Ajewole, O. Oladepo, K. A. Hassan, A. A. Olawuyi, O. Onarinde, “Comparative study of the 

performances of three metaheuristic algorithms in sizing hybrid-source power system," Turkish Journal 

of Electrical Power and Energy Systems, vol. 2, no 2, pp. 134-146, 2022, 

https://doi.org/10.5152/tepes.2022.22012. 

[44]  .  ateen,  .  asim,  .  had,  .  shfaq,  .  qbal, and  .  li, “ mart energy management system for 

minimizing electricity cost and peak to average ratio in residential areas with hybrid genetic flower 

pollination algorithm,” Alexandria Engineering Journal, vol. 77, pp. 593-611, 2023, 

https://doi.org/10.1016/j.aej.2023.06.053. 

[45]  .  advar,  .  avidi,  .  .  . Javadi, and  .  irzarezaee, “  cooperative approach for combining 
particle swarm optimization and differential evolution algorithms to solve single-objective optimization 

https://doi.org/10.1109/ICEPECC57281.2023.10209484
https://doi.org/10.1109/ICECCE49384.2020.9179308
https://doi.org/10.31763/ijrcs.v4i1.1286
https://doi.org/10.1088/2631-8695/ac2bf3
https://doi.org/10.31763/ijrcs.v2i2.476
https://doi.org/10.1016/j.isatra.2020.12.033
https://doi.org/10.1002/tee.23430
https://doi.org/10.1109/IRASET57153.2023.10153024
https://doi.org/10.15866/iree.v15i5.18688
https://doi.org/10.1109/ICITBS53129.2021.00211
https://doi.org/10.46300/9108.2020.14.14
https://doi.org/10.1109/ICCES57224.2023.10192687
https://doi.org/10.1109/ICRERA47325.2019.8996520
https://doi.org/10.5152/tepes.2022.22012
https://doi.org/10.1016/j.aej.2023.06.053


1206 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 4, No. 3, 2024, pp. 1186-1206 

 

 

Adil Najem (Simulation and Arduino Hardware Implementation of ACO, PSO, and FPA Optimization Algorithms for 

Speed Control of a DC Motor) 

 

problems,” Applied Intelligence, vol. 52, no. 4, pp. 4089-4108, 2022, https://doi.org/10.1007/s10489-021-

02605-x. 

[46] G. Zhou,  .  oayedi,  .  ahiraei, and  .  yu, “ mploying artificial bee colony and particle swarm 

techniques for optimizing a neural network in prediction of heating and cooling loads of residential 

buildings,” Journal of Cleaner Production, vol. 254, p. 120082, 2020, 

https://doi.org/10.1016/j.jclepro.2020.120082. 

[47] C. Yin, Q. Fang,  .  i, Y.  eng, X. Xu, and  .  ang, “ n optimized resource scheduling algorithm based 
on GA and ACO algorithm in fog computing,” The Journal of Supercomputing, vol. 80, pp. 4248-4285, 

2024, https://doi.org/10.1007/s11227-023-05571-y. 

[48] A. I. A. Raof, M. S. Hadi, A. Jamali, H. M. Yatim, M. H. A. Talib and I. Z. M. Darus, "Intelligent PID 

Controller Tuned by Bacterial Foraging Optimization Algorithm for Vibration Suppression of Horizontal 

Flexible Structure," 2022 IEEE 8th International Conference on Smart Instrumentation, Measurement 

and Applications (ICSIMA), pp. 237-241, 2022, https://doi.org/10.1109/ICSIMA55652.2022.9928906. 

[49]  .  .  koro and C.  .  nwerem, “ obust control of a  C motor,” Heliyon, vol. 6, no. 12, p. E05777, 

2020, https://doi.org/10.1016/j.heliyon.2020.e05777. 

[50]  .  aarif and  .  .  etiawan, “Control of  C  otor  sing  ntegral  tate Feedback and Comparison 
with    :  imulation and  rduino  mplementation,” Journal of Robotics and Control, vol. 2, no. 5, pp. 

456-461, 2021, https://doi.org/10.18196/jrc.25122. 

[51]  .  a’arif and  . Çakan, “ imulation and  rduino  ardware  mplementation of  C  otor Control 
 sing  liding  ode Controller,” Journal of Robotics and Control, vol. 2, no. 6, pp. 582-587, 2021, 

https://doi.org/10.18196/jrc.26140. 

[52] K.  .  bdulhussein,  .  . Yasin,  . J.  asan, and K.  .  bdulhussein, “Comparison between butterfly 
optimization algorithm and particle swarm optimization for tuning cascade PID control system of PMDC 

motor,” International Journal of Power Electronics and Drive Systems, vol. 12, no. 2, pp. 736-744, 2021, 

http://doi.org/10.11591/ijpeds.v12.i2.pp736-744. 

[53]  .  azmjooy,  .  ahedi,  .  .  strela,  .  adilha, and  . C.  .  onteiro, “ peed Control of a  C  otor 
 sing     Controller  ased on  mproved  hale  ptimization  lgorithm,” Metaheuristics and 

Optimization in Computer and Electrical Engineering, vol. 696, pp. 153–167, 2021, 

https://doi.org/10.1007/978-3-030-56689-0_8. 

[54]  .  adweh,  . Khaddam,  .  ayek,  .  tieh, and  .  aes  lhelou, “ ptimization of P& PI controller 

parameters for variable speed drive systems using a flower pollination algorithm,” Heliyon, vol. 6, no. 8, 

p. E04648, 2017, https://doi.org/10.1016/j.heliyon.2020.e04648. 

 

https://doi.org/10.1007/s10489-021-02605-x
https://doi.org/10.1007/s10489-021-02605-x
https://doi.org/10.1016/j.jclepro.2020.120082
https://doi.org/10.1007/s11227-023-05571-y
https://doi.org/10.1109/ICSIMA55652.2022.9928906
https://doi.org/10.1016/j.heliyon.2020.e05777
https://doi.org/10.18196/jrc.25122
https://doi.org/10.18196/jrc.26140
http://doi.org/10.11591/ijpeds.v12.i2.pp736-744
https://doi.org/10.1007/978-3-030-56689-0_8
https://doi.org/10.1016/j.heliyon.2020.e04648

