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1. Introduction 

The worrisome rise in demand’s and dynamic’s load trends, which have a substantial impact on 

TSs, have made electrical grids into ever more complicated systems. They frequently operate as 

over\underloaded [1]-[5]. Most nations still use antiquated TSs. For instance, the 345 kV bulk TSs in 

the US and their related substations, cables, and wires are forty years of age or older [6]. Furthermore, 

the costly nature of building and developing novel ESs means that several difficult problems already 

in place, like excessive power losses, voltage profile concerns, instability as well as reliability 

challenges, will inevitably get worse [1], [7]-[9]. The homes, businesses, and manufacturing industries 

are predicted to grow by 0.5%, 0.8%, and 0.9% yearly from 2013 to 2040, based on research by the 

EIA [10]-[12]. Nevertheless, is not anticipated that the system will be able to satisfy the need and send 

the electricity produced from centralized PG to the distribution system by 2040, according to the same 

report [10], [13]-[15]. Approximately 1134.6 GW of PG capacity would be needed. The TS may get 

congested as a result of this [16]-[18]. Making the maximum use of the PG and TSs is therefore the 

wisest course of action. 

ARTICLE INFO  ABSTRACT 

 

Article history 

Received May 08, 2024 

Revised June 23, 2024 

Accepted July 01, 2024 

 Optimal power flow (OPF) problem and its implications for power system 

stability and efficiency is investigated in this study. OPF, a restricted 

optimization query with non-linearity and non-convexity, is one of the 

most challenging and fascinating problems in the recent power system. 

Based on these parameters, researchers have been working hard over the 

past few decades to identify the best solutions to the OPF issue that 

maintain system stability. This work presents multi-objective OPF 

solutions utilizing Newton's technique with numerous multi-type FACTS 

units. First, the GA is applied to identify the perfect size and location of the 

FACTS units. Next, the generator and FACTS settings are optimized. In 

this instance, four scenarios are taken into consideration and three OFs are 

employed to see how the OFs affect the positioning and dimensions of 

FACTS devices. The OF is suggested to consider the reduction of both 

generation costs and transmission losses while also optimizing the power 

transfer capacity of designated corridors. A full analysis relating to the 

IEEE-30 bus system is presented and analyzed. 

 

Keywords 

Multi-Objective Optimization; 

Power System Stability; 

FACTS; 

IEEE 30 Bus; 

Multiple GUPFCs 

This is an open-access article under the CC–BY-SA license. 

 

http://pubs2.ascee.org/index.php/ijrcs
http://dx.doi.org/10.31763/ijrcs.v4i3.1472
mailto:ijrcs@ascee.org
mailto:shhakmi@jazanu.edu.sa
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


1076 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 4, No. 3, 2024, pp. 1075-1091 

 

 

Sultan Hassan Hakmi (Applications of Multi-Objective OPF Solutions with Optimal Placement of Multiple and Multi-

Type FACTS Units to IEEE System: Comparison of Different Approaches) 

 

The most important method for minimizing generation costs and TS losses while also 

maximizing power move ability trends in an ES with current transmission and operating limitations is 

known as OPF. OPF solution strategies are crucial for controlling PFs in a market that has been 

privatized. Several optimization methods have been used for OPF problems throughout the past 40 

years [19]-[21]. They can be categorized as Newton-based approaches, EP approaches, interior 

methods (IM), GA, etc. Nonlinear objective and constraint equations are used in nonlinear 

programming techniques. Because they can simulate ESs quite well, these constitute the oldest class 

of OPF approaches. A strategy to reduce fuel expenses and active power (P) loss through the use of 

the penalty function optimization methodology is covered in [22]. Ref [23] optimizes shifted cost 

models using a modified version of Fletcher's quasi-NM. Problems involving constraints and goal 

functions expressed in linear forms are handled by LP. Ref [24] used an LP technique to solve an 

financial dispatch of P with constraint lessening. Ref [25] divided the dispatch challenge into a 

dominant difficulty and multiple smaller LP subdivisions via the Dantzig-Wolfe breakdown. The NM 

in conjunction with linear programming techniques has been covered in [26]. Refs. [27], [28], uses an 

optimizing technique that involves splitting the initial problem into a set of linearly bound subdivisions 

and solving them with an enriched Lagrangian-style objective function.  

To give ESs the most benefits, diverse types of FACTS devices, like the UPFC, TCSC, SSSC, 

SVC, STATCOM, TCPST, TCVR, interlink PF controller, and optimal UPFC, should have their 

types, numbers, positions, and settings optimized [29]-[32]. The best places and contableurations for 

FACTS units in ESs are difficult to determine, and a sizable data collection is usually needed. Four 

types of approaches and techniques were employed in earlier studies to identify the best locations and 

configurations for FACTS tools: analytical techniques, mathematical coding approaches, meta-

heuristic optimization ways, and hybrid techniques. The capacity of FACTS regulators to adopt 

algorithms of control constructed to accomplish numerous goals is one of its distinguishing features 

[33]-[35]. The optimal place of FACTS units is a multi-objective optimization problem, including the 

power balance equation, bus voltage, producer P&Q, ratings for FACTS tools, TS thermal bounds, 

power loss formula, PF equations, and request restrictions [36], [37]. 

The exceptionally nonlinear OPF issue can be solved using GA, which was suggested in [38], [4] 

and is not limited by the fuel cost functions' shape. To carry out its genetic processes, GA needs an 

encoding method for deciding parameters, though. The convergence of the GA is significantly 

impacted by various encoding techniques. Extensive computer time is also wasted on the crossover 

and mutation operations on binary-coded parameters, as well as the encoding and decoding for each 

option that is found. The efficacy of the GA in resolving the OPF issue is diminished by these issues. 

The optimization problem for units with non-smooth fuel cost has been addressed in recent papers 

using EP approaches that can incorporate all limitations resulting from FACTS units and 

liberalization. NM was used in [39] to solve the OPF including advanced SVC and UPFC. Ref. [40] 

used nonlinear IM to solve OPF including GUPFC. The best places for FACTS tools in vertically 

integrated and unbundled ESs can be found using a variety of indices and methodologies [38]. To 

minimize mathematical complexity, GA approaches can be applied to determine the best position for 

FACTS tools for various goal functions [41], [42].  

Regardless of system size, the suggested OPF algorithm can handle multiple TCSC, UPFC, and 

GUPFC units in addition to multi-type FACTS. The approach makes use of patchy NM, which allows 

for a noteworthy lessening in both the mathematical involvedness and the solution time without 

sacrificing optimality. Many variables are analyzed, such as the voltage magnitude and phase angle, 

PG cost, setting up and operating costs of FACTS tools (place, sort, amount, and bulk), and overloaded 

and utilization lines. The IEEE 30 bus system standard is castoff to prove the role of the wished-for 

systems.  
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2. Problem Formulation 

2.1. OPF with FACTS Devices 

The next form can be used to define a broad minimizing issue: Maximize/Minimize 𝑓(𝑥, 𝑢, 𝑠) 
(OF) Subject to: 

 
𝑔(𝑥, 𝑢, 𝑠) = 0 (EC) 

and ℎ(𝑥, 𝑢, 𝑠) ≤ 0(IC) 
(1) 

where vectors x, u, and s are state, control, and FACTS variables and fully described in [43], [44]: 

 𝑥 = [𝑄𝐺1, ⋯𝑄𝐺𝑛, 𝛿𝐺1, ⋯ 𝛿𝐺𝑛, 𝑉𝑃𝑄1,⋯ 𝑉𝑃𝑄𝑛, 𝛿𝑃𝑄1,⋯ 𝛿𝑃𝑄𝑛]
𝑇
 (2) 

 𝑢 = [𝑃𝐺1, ⋯ 𝑃𝐺𝑛, 𝑉𝐺1,⋯ 𝑉𝐺𝑛, 𝑇𝑎𝑝1, ⋯𝑇𝑎𝑝𝑛𝑇]
𝑇 (3) 

 𝑠 = [𝑠𝑇𝐶𝑆𝐶 , 𝑠𝑈𝑃𝐹𝐶 , 𝑠𝐺𝑈𝑃𝐹𝐶 ,⋯ ]𝑇 (4) 

where 𝑠𝑇𝐶𝑆𝐶 = 𝑋𝑇𝐶𝑆𝐶, is the reactance of the TCSC,  𝑠𝑈𝑃𝐹𝐶 = [𝛿𝑠𝑈𝑃𝐹𝐶 , 𝑉𝑠𝑈𝑃𝐹𝐶 , 𝛿𝑝𝑈𝑃𝐹𝐶]
𝑇
are the VM 

and angle of series and shunt inserted voltage of the UPFC and 𝑠𝐺𝑈𝑃𝐹𝐶 =

[𝛿𝑠𝑙𝐺𝑈𝑃𝐹𝐶 , 𝑉𝑠𝑙𝐺𝑈𝑃𝐹𝐶 , 𝛿𝑝𝐺𝑈𝑃𝐹𝐶]
𝑇

are the VM and angle of series and shunt inserted voltage of GUPFC. 

All the variables of x, u and s are the decision variables of the 𝑓(𝑥, 𝑢, 𝑠). It plots the VS (nu + nx + ns) 

onto scalar space. 𝑔(𝑥, 𝑢, 𝑠) is the function in lieu of the ECs. Its atlases the (nu + nx + ns) VS onto a 

VS of size k. ECs are the PF equations. ℎ(𝑥, 𝑢, 𝑠) is the function representing the ICs. It maps the (nu 

+ nx + ns) VS onto a VS of size m. ICs are the PFs and voltage profiles, besides TSs flows. 
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j
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Fig. 1. TS including FACTS 

For simplification, all the variables in x and u can be combined to x and so we can assume an OF 

with EC and IC are the function of x, s only. 

The EC’s OF 𝑔(𝑥, 𝑠) and IC ℎ(𝑥, 𝑢, 𝑠)is given as seen in (5), and (6) 

 
𝑔(𝑥, 𝑠) = [𝑔𝑝1(𝑥, 𝑠),…𝑔𝑝𝑛(𝑥, 𝑠), 𝑔𝑄1(𝑥, 𝑠),… 𝑔𝑄𝑛(𝑥, 𝑠)]

𝑇
= [

𝛥𝑃
𝛥𝑄
] = 0 (5) 

 
ℎ(𝑥, 𝑢, 𝑠) = {[

ℎ1(𝑥, 𝑢)

ℎ2(𝑠)
]} ≤ 0 (6) 

Where (7), As seen in (8), the optimization process terminates as soon as the variations amid the 

defined and determined apparent line powers are smaller than a preset lenience. 

2.2. Lagrangian Function (LF) 

Through NM, the system's nodal VMs, angles, and FACTS state variables are integrated into a 

single frame as a basis to provide a unified, ideal solution. The given PF, VMs, and optimality 
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requirements are satisfied automatically by regulating the FACTS state variable [45]. Based on the 

equivalent circuit (Fig. 1). 

 

ℎ1(𝒙, 𝒖)

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑃𝐺𝑖

𝑚𝑖𝑛𝐺𝑖

𝑃𝐺𝑖 − 𝑃𝐺𝑖
𝑚𝑎𝑥

𝑉𝐺𝑖
𝑚𝑖𝑛𝐺𝑖

𝑉𝐺𝑖 − 𝑉𝐺𝑖
𝑚𝑎𝑥

𝑇𝑖
𝑚𝑖𝑛𝑖

𝑇𝑖 − 𝑇𝑖
𝑚𝑎𝑥

𝑄𝐺𝑖
𝑚𝑖𝑛𝐺𝑖

𝑄𝐺𝑖 − 𝑄𝐺𝑖
𝑚𝑎𝑥

𝑉𝑖
𝑚𝑖𝑛𝑖

𝑉𝑖  − 𝑉𝑖
𝑚𝑎𝑥

[𝑆𝑓𝑡]
2
− [𝑆𝑓𝑡

𝑚𝑎𝑥[]2][]{} ≤ 0, ℎ2(𝒔) =

[
 
 
 
 
 
 
 
 
 
 𝑋𝑇𝐶𝑆𝐶

𝑚𝑖𝑛𝑇𝐶𝑆𝐶

𝑋𝑇𝐶𝑆𝐶 − 𝑋𝑇𝐶𝑆𝐶
𝑚𝑎𝑥

𝑉𝑠𝑈𝑃𝐹𝐶
𝑚𝑖𝑛𝑠𝑈𝑃𝐹𝐶

𝑉𝑠𝑈𝑃𝐹𝐶 − 𝑉𝑠𝑈𝑃𝐹𝐶
𝑚𝑎𝑥

𝛿𝑠𝑈𝑃𝐹𝐶
𝑚𝑖𝑛𝑠𝑈𝑃𝐹𝐶

𝛿𝑠𝑈𝑃𝐹𝐶 − 𝛿𝑠𝑈𝑃𝐹𝐶
𝑚𝑎𝑥

𝛿
𝑝𝑈𝑃𝐹𝐶

𝑚𝑖𝑛𝑝𝑈𝑃𝐹𝐶

𝛿𝑝𝑈𝑃𝐹𝐶 − 𝛿𝑝𝑈𝑃𝐹𝐶
𝑚𝑎𝑥

≤ 0

]
 
 
 
 
 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 (7) 

 
 (8) 

The next linearized PF equations are: 

 
𝑃𝐺𝑓 − 𝑃𝑑𝑓 =∑𝑉𝑓𝑌𝑓𝑗𝑉𝑗

𝑛

𝑗=1

𝑐𝑜𝑠(𝛿𝑓 − 𝛿𝑗 − 𝜃𝑓𝑗) + 𝑃𝑖𝑛𝑗𝑓 

𝑄𝐺𝑓 − 𝑄𝑑𝑓 =∑𝑉𝑓𝑌𝑓𝑗𝑉𝑗

𝑛

𝑗=1

𝑠𝑖𝑛(𝛿𝑓 − 𝛿𝑗 − 𝜃𝑓𝑗) + 𝑄𝑖𝑛𝑗𝑓 

(9) 

In the same way, bus t becomes; 

 
𝑃𝐺𝑡 − 𝑃𝑑𝑡 =∑𝑉𝑡𝑌𝑡𝑗𝑉𝑗

𝑛

𝑗=1

𝑐𝑜𝑠(𝛿𝑡 − 𝛿𝑗 − 𝜃𝑡𝑗) + 𝑃𝑖𝑛𝑗𝑡 

𝑄𝐺𝑡 − 𝑄𝑑𝑡 =∑𝑉𝑡𝑌𝑡𝑗𝑉𝑗

𝑛

𝑗=1

𝑠𝑖𝑛(𝛿𝑡 − 𝛿𝑗 − 𝜃𝑡𝑗) + 𝑄𝑖𝑛𝑗𝑡  

(10) 

where n is the buses number.  Pinjf, Qinjf, Pinjt, and Qinjt (i) are the FACTS give a jab P and Q at node-

f and -t and the standards of them primarily hinge on the types of FACTS controller. 

The initial phase in outcome the optimum result is to figure a LF; 𝐿𝑓𝑚(𝒛) matching the PF 

incongruity calculation at buses f and m, they are obviously modeled in the OPF NM as ECs as: 

( )

( )

*

*

Re

Im

*

i i ij j i

*

i i ij j i

P V Y V S

Q V Y V S

= − 

= − 
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 𝐿𝑓𝑚(𝑧) = 𝜆𝑃𝑓(𝑃𝑓 + 𝑃𝑑𝑓 − 𝑃𝐺𝑓) + 𝜆𝑄𝑓(𝑄𝑓 + 𝑄𝑑𝑓 − 𝑄𝐺𝑓) 

           +𝜆𝑃𝑚(𝑃𝑚 + 𝑃𝑑𝑚 − 𝑃𝐺𝑚) + 𝜆𝑄𝑚(𝑄𝑚 + 𝑄𝑑𝑚 − 𝑄𝐺𝑚) 
(11) 

 
[𝑊] [

𝛥𝑥
𝛥𝑠
𝛥𝜆
] = − [

𝛻𝑥𝐿
𝛻𝑠𝐿
𝛻𝜆𝐿

] ⇒ [𝑊][𝛥𝑧] = −[𝛻𝐿] (12) 

where, 𝑃𝑓, 𝑃𝑚 , 𝑄𝑓 , 𝑄𝑚 are P and Q fed at nodes f and m.  𝑃𝐺𝑓 , 𝑃𝐺𝑚 , 𝑄𝐺𝑓 , 𝑄𝐺𝑚 are P and Q generations 

at nodes f and m, correspondingly. 𝑃𝑑𝑓, 𝑃𝑑𝑚, 𝑄𝑑𝑓 , 𝑄𝑑𝑚 are P and Q loads at nodes f and m, 

correspondingly. 𝜆𝑃𝑓, 𝜆𝑄𝑓 , 𝜆𝑃𝑚 , 𝜆𝑄𝑚 are LF multipliers at nodes f and m, and𝒛 = [𝑥 𝑠 𝜆]𝑇 ,where 

x, s, 𝜆 are vectors of state-control, FACTS and LF multipliers variables. 

The initial and subsequent order derivative terms of (11) are to be found in vector 𝛻𝐿𝑓𝑡and 

matrix,𝑾𝑓𝑡 respectively. These terms are then combined with the gradient vector𝛻𝐿 and matrix 𝑊 of 

the entire network for a sparsity-oriented solution [41]. 

2.2.1. For TCSC 

Assuming that, TCSC is connected in between nodes f and m as shown in Fig. 2. After applying 

KCL and KVL, the overall transfer AM for the TCSC is created. The components of the branch AM 

are computed for every branch. 

 

Fig. 2. TS combining TCSC 

 
[
𝐼𝑓
𝐼𝑚
] = [

𝑌𝑓𝑓 𝑌𝑓𝑚
𝑌𝑚𝑓 𝑌𝑚𝑚

] [
𝑉𝑓
𝑉𝑚
] (13) 

where, 

 
𝑌𝑓𝑓 = 𝑌𝑚𝑚 =

1

𝑋𝑇𝐶𝑆𝐶
, 𝑌𝑓𝑚 = 𝑌𝑚𝑓 = −

1

𝑋𝑇𝐶𝑆𝐶
 (14) 

The 𝑃𝑓𝑖𝑛𝑗
𝑇𝐶𝑆𝐶  and 𝑄𝑓𝑖𝑛𝑗

𝑇𝐶𝑆𝐶 injections at bus-f can be stated by; 

 𝑃𝑓𝑖𝑛𝑗
𝑇𝐶𝑆𝐶 = 𝑉𝑓𝑉𝑚𝐵𝑇𝐶𝑆𝐶 𝑠𝑖𝑛( 𝛿𝑓 − 𝛿𝑚) 

𝑄𝑓𝑖𝑛𝑗
𝑇𝐶𝑆𝐶 = 𝑉𝑓

2𝐵𝑇𝐶𝑆𝐶 + 𝑉𝑓𝑉𝑚𝐵𝑇𝐶𝑆𝐶 𝑐𝑜𝑠( 𝛿𝑓 − 𝛿𝑚) 
(15) 

Similarly, the 𝑃𝑚𝑖𝑛𝑗
𝑇𝐶𝑆𝐶  and 𝑄𝑚𝑖𝑛𝑗

𝑇𝐶𝑆𝐶 fed at bus-m can be expressed by; 

 𝑃𝑚𝑖𝑛𝑗
𝑇𝐶𝑆𝐶 = 𝑉𝑓𝑉𝑚𝐵𝑇𝐶𝑆𝐶 𝑠𝑖𝑛( 𝛿𝑚 − 𝛿𝑓) 

𝑄𝑚𝑖𝑛𝑗
𝑇𝐶𝑆𝐶 = 𝑉𝑚

2𝐵𝑇𝐶𝑆𝐶 + 𝑉𝑓𝑉𝑚𝐵𝑇𝐶𝑆𝐶 𝑐𝑜𝑠( 𝛿𝑚 − 𝛿𝑓)  
(16) 

where, 𝑩𝑇𝐶𝑆𝐶 =
1

𝑿𝑇𝐶𝑆𝐶
and 𝑉𝑓, 𝑉𝑚 , 𝛿𝑓, 𝛿𝑚 are the VMs and phase angles at nodes f and m as depicted 

in Fig. 2.  

f 
t 

Z TCSC 

If 
It 

Vf Vt 2

cB
j

2

cB
j

m 
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The LF now includes the PF incompatibility formula at nodes f and m as ECs. The TCSC linked 

to nodes f and m controls the P flow over branch m-t, as illustrated in Fig. 2. This operational condition 

is represented in the OPF formulation as an EC that, if the TCSC is configured to regulate a 

predetermined quantity of P, is active during the iterative process. It should be noted that the LF, 

𝐿𝑓𝑡(𝒛) be made up of 𝐿𝑓𝑚(𝒛) + 𝐿𝑚𝑡(𝒛), 

 𝐿𝑚𝑡(𝑧) = 𝜆𝑚𝑡(𝑃𝑚𝑡 − 𝑃𝑐) (17) 

where 𝜆𝑚𝑡is the LF multiplier associated with the P flowing from nodes m to t, and 𝑃𝑐 is the desired 

active PF in the line. 

 𝐿𝑓𝑡(𝒛) = 𝜆𝑃𝑓(𝑃𝑓 + 𝑃𝑑𝑓 − 𝑃𝐺𝑓) + 𝜆𝑄𝑓(𝑄𝑓 + 𝑄𝑑𝑓 − 𝑄𝐺𝑓) 

+𝜆𝑃𝑚(𝑃𝑚 + 𝑃𝑑𝑚 − 𝑃𝐺𝑚) + 𝜆𝑄𝑚(𝑄𝑚 + 𝑄𝑑𝑚 − 𝑄𝐺𝑚) + 𝜆𝑚𝑡(𝑃𝑚𝑡 − 𝑃𝑐) 
(18) 

2.2.2. For UPFC 

Employing KCL and KVL to the schematic depicted in Fig. 3 yields an approximate transfer AM 

for the UPFC. The following equations can be used to calculate the infusion currents for every branch.  

V 
p 

V 
s Z 

s 

Z 
p 

UPFC  

jB 
c 

t 
I 
s I It 

m 

f 

jB 
c 

+ 

+ 

- 

- 

f 

Ip 

Im 
PL +  j QL 

Transmission Line  

L 

Pd c=Ps=Pp 

 

Fig. 3. Connection of investigated UPFC in a TS 

 
[
𝐼𝑓
𝐼𝑚
] = [

𝑌𝑓𝑓 𝑌𝑓𝑚
𝑌𝑚𝑓 𝑌𝑚𝑚

] [
𝑉𝑓
𝑉𝑚
] + [

𝑌𝑓𝑚 𝑌𝑠
𝑌𝑚𝑚 0

] [
𝑉𝑠
𝑉𝑝
] (19) 

The P and Q Eqs., are derived: At node f, m in (20) and (21), respectively 

 𝑃𝑓 =   𝑉𝑓
2𝐺𝑓𝑓 + 𝑉𝑓𝑉𝑚(𝐺𝑓𝑚 𝑐𝑜𝑠(𝛿𝑓 − 𝛿𝑚) + 𝐵𝑓𝑚 𝑠𝑖𝑛(𝛿𝑓 − 𝛿𝑚)) 

                      + 𝑉𝑓𝑉𝑠(𝐺𝑓𝑚 𝑐𝑜𝑠(𝛿𝑓 − 𝛿𝑠)  + 𝐵𝑓𝑚 𝑠𝑖𝑛(𝛿𝑓 − 𝛿𝑠)) 

                      + 𝑉𝑓𝑉𝑝(𝐺𝑝 𝑐𝑜𝑠(𝛿𝑓 − 𝛿𝑝)  + 𝐵𝑝 𝑠𝑖𝑛(𝛿𝑓 − 𝛿𝑝)) 

𝑄𝑓 = −𝑉𝑓
2𝐵𝑓𝑓 + 𝑉𝑓𝑉𝑚(𝐺𝑓𝑚 𝑠𝑖𝑛(𝛿𝑓 − 𝛿𝑚) − 𝐵𝑓𝑚 𝑐𝑜𝑠(𝛿𝑓 − 𝛿𝑚)) 

                     + 𝑉𝑓𝑉𝑠  (𝐺𝑓𝑚 𝑠𝑖𝑛(𝛿𝑓 − 𝛿𝑠) − 𝐵𝑓𝑚  𝑐𝑜𝑠(𝛿𝑓 − 𝛿𝑠)) 

                     + 𝑉𝑓𝑉𝑝(𝐺𝑝 𝑠𝑖𝑛(𝛿𝑓 − 𝛿𝑝)  − 𝐵𝑝 𝑐𝑜𝑠(𝛿𝑓 − 𝛿𝑝)) 

(20) 

 𝑃𝑚 = 𝑉𝑚
2𝐺𝑚𝑚   + 𝑉𝑓𝑉𝑚(𝐺𝑓𝑚 𝑐𝑜𝑠(𝛿𝑚 − 𝛿𝑓) + 𝐵𝑓𝑚 𝑠𝑖𝑛(𝛿𝑚 − 𝛿𝑓)) 

                         + 𝑉𝑚𝑉𝑠(𝐺𝑚𝑚 𝑐𝑜𝑠(𝛿𝑚 − 𝛿𝑠) + 𝐵𝑚𝑚 𝑠𝑖𝑛(𝛿𝑚 − 𝛿𝑠)) 

𝑄𝑚 = −𝑉𝑚
2𝐵𝑚𝑚 + 𝑉𝑚𝑉𝑚(𝐺𝑓𝑚 𝑠𝑖𝑛(𝛿𝑚 − 𝛿𝑓) − 𝐵𝑓𝑚 𝑐𝑜𝑠(𝛿𝑚 − 𝛿𝑓)) 

                        + 𝑉𝑚𝑉𝑠(𝐺𝑚𝑚 𝑠𝑖𝑛(𝛿𝑚 − 𝛿𝑠) − 𝐵𝑚𝑚 𝑐𝑜𝑠(𝛿𝑚 − 𝛿𝑠)) 

(21) 

Furthermore, the P and Q Eqs., for the series and shunt converters are presented in (22), and (23), 

respectively 
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 𝑃𝑠 =    𝑉𝑠
2𝐺𝑚𝑚 + 𝑉𝑠𝑉𝑓(𝐺𝑓𝑚 𝑐𝑜𝑠(𝛿𝑠 − 𝛿𝑓) + 𝐵𝑓𝑚 𝑠𝑖𝑛(𝛿𝑠 − 𝛿𝑓)) 

                       + 𝑉𝑠𝑉𝑚(𝐺𝑚𝑚 𝑐𝑜𝑠(𝛿𝑠 − 𝛿𝑚) + 𝐵𝑚𝑚 𝑠𝑖𝑛(𝛿𝑠 − 𝛿𝑚)) 

𝑄𝑠 = −𝑉𝑠
2𝐵𝑚𝑚 + 𝑉𝑠𝑉𝑓(𝐺𝑓𝑚  𝑠𝑖𝑛(𝛿𝑠 − 𝛿𝑓) − 𝐵𝑓𝑚 𝑐𝑜𝑠(𝛿𝑠 − 𝛿𝑓)) 

                      + 𝑉𝑠𝑉𝑚(𝐺𝑚𝑚 𝑠𝑖𝑛(𝛿𝑠 − 𝛿𝑚) − 𝐵𝑚𝑚 𝑐𝑜𝑠(𝛿𝑠 − 𝛿𝑚)) 

(22) 

 𝑃𝑝 = −𝑉𝑝
2𝐺𝑝 + 𝑉𝑝𝑉𝑓  (𝐺𝑝 𝑐𝑜𝑠(𝛿𝑝 − 𝛿𝑓)  + 𝐵𝑝 𝑠𝑖𝑛(𝛿𝑝 − 𝛿𝑓)) 

𝑄𝑝 = 𝑉𝑝
2𝐵𝑝 + 𝑉𝑝𝑉𝑓(𝐺𝑝  𝑠𝑖𝑛(𝛿𝑝 − 𝛿𝑓)  − 𝐵𝑝 𝑐𝑜𝑠(𝛿𝑠 − 𝛿𝑓)) 

(23) 

Under the assumption of a zero-loss converter, the UPFC does not pump or soak P in relation to 

the TS. Here, the P required by the series converter (Ps) must be satisfied by the P given to the shunt 

converter (Pp), 

 𝑃𝑠 + 𝑃𝑝 = 0 (24) 

where 𝑌𝑓𝑓 and 𝑌𝑚𝑚 are admittance at bus f, m. 𝑌𝑓𝑚 is admittance linking bus f&t, 𝑌𝑠 and 𝑌𝑝 are the 

series and shunt transformer admittances. 𝛿𝑓 and 𝛿𝑚 are the angles of voltage buses f and m 

respectively. 𝛿𝑠 and 𝛿𝑝 are the controllable angles of supreme voltage source in lieu of the series and 

shunt converters respectively. A vital principle in UPFC model [23], is that the Pp necessity gratify 

the Ps. 

 𝐿𝑝−𝑠(𝑧) = 𝜆𝑝−𝑠(𝑃𝑝 + 𝑃𝑠) (25) 

where 𝜆𝑝−𝑠 is the LF multiplier. 

The P incinerated at t is expressed as a stream limitation crosswise the outlet that connects f and 

t. Flow constraints of this type are typically carried out in OPF formulas only in the event that PF 

limits are surpassed, but in this specific use, this limitation is active during the iterative outcome unless 

the user elects to disable the limitations. Fig. 3 shows the typical operation scenario as soon as the 

UPFC is connected. 

 𝐿𝑚𝑡(𝑧) = 𝜆𝑃𝐿(𝑃𝐿 − 𝑃𝑐) + 𝜆𝑄𝐿(𝑄𝐿 + 𝑄𝑐) (26) 

where 𝜆𝑃𝐿 is the LF related with P dose at t and 𝜆𝑄𝐿 is the LF allied with Q dose at t. 𝑃𝑐and 𝑄𝑐 are the 

stated P and Q exit t. The UPFC LF that includes each of the previously mentioned separate donations 

is, 

 𝐿𝑈𝑃𝐹𝐶(𝑧) = 𝐿𝑓𝑚(𝑧) + 𝐿𝑝−𝑠(𝑧) + 𝐿𝑚𝑡(𝑧) (27) 

i.e. 

 𝐿𝑈𝑃𝐹𝐶(𝒛) = 𝜆𝑃𝑓(𝑃𝑓 + 𝑃𝑑𝑓 − 𝑃𝐺𝑓) + 𝜆𝑄𝑓(𝑄𝑓 + 𝑄𝑑𝑓 − 𝑄𝐺𝑓) 

              +𝜆𝑃𝑚(𝑃𝑚 + 𝑃𝑑𝑚 − 𝑃𝐺𝑚) + 𝜆𝑄𝑚(𝑄𝑚 + 𝑄𝑑𝑚 − 𝑄𝐺𝑚) 

              +𝜆𝑝−𝑠(𝑃𝑝 + 𝑃𝑠) + 𝜆𝑃𝐿(𝑃𝐿 − 𝑃𝑐) + 𝜆𝑄𝐿(𝑄𝐿 + 𝑄𝑐) 

(28) 

In the same way (19) to (28) can be extended for GUPFC. 

3. Proposed GA Method 

The best location of investigated FACTS tools under a number of limitations is solved using the 

suggested GA, which has proven to be able to produce precise and workable options in a fair amount 

of time to compute. Fig. 4 depicts the flowchart of the best location for the FACTS units employing 

GA, which is also utilized to obtain the OPF options. Ninety-five percent was the crossover rate and 

one percent was the mutation rate. Several crossover techniques, such as single, double, and uniform, 

were tested. Nonetheless, this model's bracket crossover produced logical answers. When the 
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suggested approach is used on an IEEE 30-bus system, the best places for TCSCs, UPFCs, and 

GUPFCs are found. The following part covers the OPF options for minimizing generating costs with 

FACTS tools positioned in the best lines found by GA.  

 

Fig. 4. Identifying the optimum place of FACTS via GA 

4. Results and Discussion 

The IEEE 30-bus test systems (41 TLs, 4 LTC transformers, and 6 PGs) have been used to 

demonstrate the efficacy of the suggested technique. The maximum absolute bus power discrepancy 

convergence margins for all instances here are 1 e-8 (0.0001 MW/MVAR). Investigations for the 

addressed system [46], depicted in Fig. 5, are conducted in order to assess the efficacy of the suggested 

approach. The goal of OPF ideas is to reduce the generation cost. These solutions have been stretched 

to multi-type FACTS units after being solved for many scenarios involving multiple TSCSs, UPFCs, 

and GUPFCs. 

4.1. Scenario 1: Multiple TCSCs 

Parameters (variable inductance L=0.0150 pu and capacitance C=0.00020 pu) are taken into 

consideration in order to get OPF ideas with various TCSCs. The study reveals that the TCSC operates 

in capacitive or inductive modes by default. All TCSC impedances are thought to be permitted to 

fluctuate between -70% and +20% of the matching outlet impedances. With the desired real PF of the 

lines (obtained using GA) shown in Table 1, results of the whole GC, TL, TG, Table 2 and Table 3 

give the results of the determination of the TCSC reactance and the accompanying firing angles, as 

well as ACSU that involve one and multi TCSCs. 

Table 1.  SL–PFs of TCSC 

Line (L)# From bus (B) To B 
Calculated  

L–PF (MW) 
SL–PF (MW) 

2 

3 

6 
9 

1 

2 

2 
6 

3 

4 

6 
7 

58.68 

33.88 

45.00 
34.35 

65.0 

28.5 

38.5 
30.5 
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Fig. 5. Investigated system 

Table 2.  OPF results with 1TCSC 

  Lacking TCSC L 2 L 3 L 6 L 9 

VG(p.u.) 

V1 

V2 

V5 
V8 

V11 
V13 

1.0500 

1.0382 

1.0113 
1.0192 

1.0934 
1.0886 

1.0500 

1.0376 

1.0103 
1.0181 

1.0930 
1.0875 

1.0500 

1.0380 

1.0116 
1.0196 

1.0957 
1.0893 

1.0500 

1.0380 

1.0119 
1.0199 

1.0944 
1.0896 

1.0500 

1.0380 

1.0105 
1.0194 

1.0934 
1.0882 

PG(MW) 

PG1 

PG2 
PG5 

PG8 

PG11 
PG13 

176.14 

48.84 
21.51 

22.15 

12.24 
12.00 

176.24 

48.83 
21.52 

22.06 

12.21 
12.00 

176.16 

48.84 
21.50 

22.13 

12.23 
12.00 

176.20 

48.84 
21.50 

22.10 

12.23 
12.00 

176.17 

48.84 
21.50 

22.10 

12.23 
12.00 

TAP (%) 

T11 
T12 

T15 

T36 

4.23 
-8.481 

0.646 

-5.789 

4.298 
-8.760 

0.319 

-5.882 

2.873 
-6.783 

0.826 

-5.751 

3.910 
-7.888 

0.881 

-5.719 

3.910 
-7.888 

0.881 

-5.719 

final (degree (D)) - 4.15 15.69 15.22 15.731 

XTCSC (pu) - -0.038 0.058 0.053 0.0585 

∑𝑃𝐺 (MW) 292.88 292.846 
292. 

854 
292.85 292.842 

∑𝑃𝑙𝑜𝑠𝑠 (MW) 9.478 9.446 9.454 9.442 9.442 
∑𝐶𝑜𝑠𝑡 ($/hr) 802.404 802.261 802.311 802.262 802.251 
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Table 3.  OPF results with 2 TCSC 

Line #. 2&3 2&6 2&9 3&6  3& 9 6& 9 

VG (p.u.) 

V1 
V2 

V5 

V8 
V11 

V13 

1.0500 
1.0377 

1.0107 

1.0186 
1.0937 

1.0881 

1.0500 
1.0377 

1.0110 

1.0189 
1.0950 

1.0885 

1.0500 
1.0374 

1.0094 

1.0181 
1.0922 

1.0867 

1.0500 
1.0377 

1.0129 

1.0214 
1.0964 

1.0915 

 1.0500 
1.0379 

1.0108 

1.0197 
1.0965 

1.0890 

1.0500 
1.0380 

1.0110 

1.0201 
1.0949 

1.0891 

PG(MW) 

PG1 

PG2 

PG5 
PG8 

PG11 
PG13 

176.21 

48.84 

21.51 
22.07 

12.21 
12.00 

176.23 

48.84 

21.50 
22.04 

12.21 
12.00 

176.05 

48.79 

21.38 
22.27 

12.28 
12.00 

176.35 

48.88 

21.47 
21.92 

12.16 
12.00 

 176.05 

48.79 

21.40 
22.29 

12.28 
12.00 

176.05 

48.79 

21.40 
22.28 

12.29 
12.00 

TAP (%) 

T11 

T12 
T15 

T36 

3.944 

-8.258 
0.482 

-5.839 

3.126 

-7.200 
0.575 

-5.811 

4.697 

-9.220 
0.161 

-5.874 

3.568 

-7.042 
1.381 

-5.580 

 2.260 

-5.963 
0.765 

-5.731 

3.704 

-7.573 
0.794 

-5.698 

D)final ( 

 

2 

3 

6 

9 

5.385 
12.920 

- 

- 

5.606 
- 

13.584 

- 

3.529 
- 

- 

16.444 

- 
19.535 

18.012 

- 

 - 
14.242 

- 

14.551 

- 
- 

13.917 

13.700 

XTCSC2 (pu) 

XTCSC3(pu) 

XTCSC6(pu) 
XTCSC9 (pu) 

-0.0297 

0.0307 

- 
- 

-0.028 

- 

0.037 
- 

-0.0427 

- 

- 
0.0663 

- 

0.1056 

0.0850 
- 

 - 

0.0432 

- 
0.0463 

- 

- 

0.0401 
0.0380 

∑𝑃𝐺 (MW) 292.84 292.83 292.86 292.777  292.82 292.81 
∑𝑃𝑙𝑜𝑠𝑠 (MW) 9.437 9.426 9.455 9.377  9.417 9.411 
∑𝐶𝑜𝑠𝑡 ($/hr) 802.234 802.186 802.057 801.967  802.209 802.190 

 

4.2. Scenario 2: Multiple UPFCs 

In order to derive OPF remedies with numerous UPFCs, Table 4's variables are taken into 

account. With the envisioned complex PF for certain of the perfectly chosen lines (gotten using GA) 

illustrated in Table 5, remedies of the total GC, TL, TG, UPFC control variables (s, p, and Vs), and 

ACSU in the studied system by including one and multiple UPFCs are identified and provided in 

Table 6 and Table 7. 

Table 4.  UPFC variables (pu) 

Xs Xp 𝑽𝒔
𝒎𝒂𝒙 Vp 𝑺𝒔

𝒎𝒂𝒙 𝑺𝒑
𝒎𝒂𝒙 

0.02 0.02 0.5 1.0 1.0 1.0 

Table 5.  S–L–PF of UPFC 

Line 

# 

From 

bus 

To 

bus 

PF (Sft) 

w/o UPFC (MVA) 

S Sft 

(1 UPFC) 

S Sft 

(2 UPFC) 

7 

9 

17 

6 

6 

12 

4 

7 

14 

-49.30 + j1.30 

34.35 + j3.63 

7.58 + j1.86 

-50 + j 2 

30 + j 5 

8 + j 2 

- 

26+j2 

7+j3 

 

4.3. Scenario 3: Multiple GUPFCs 

For deriving OPF remedies with numerous GUPFCs, Table 8's variables are taken into account. 

After including single and multiple GUPFCs, remedies for the total GC, TL, TG, GUPFC settings 

(s1, s2, Vs1, Vs2 and p), and ACSU of the studied system are presented in Table 9, with the effectively 

chosen lines (obtained using GA) displaying the desired complex PF in Table 10. 
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Table 6.  OPF results through 1 UPFC 

  No UPFC L 7 L 9 L 17 

VG(p.u.) 

V1 

V2 

V5 

V8 

V11 

V13 

1.0500 

1.0382 

1.0113 

1.0192 

1.0934 

1.0886 

1.0450 

1.0247 

1.0071 

1.0111 

1.0290 

1.1000 

1.0098 

0.988 

0.9835 

0.9904 

1.1000 

1. 0983 

1.0500 

1.0382 

1.0115 

1.0196 

1.1000 

1.0067 

PG(MW) 

PG1 

PG2 

PG5 

PG8 

PG11 

PG13 

176.14 

48.84 

21.51 

22.15 

12.24 

12.00 

154.72 

46.14 

22.25 

35.00 

15.08 

12.00 

163.10 

44.10 

15.00 

30.17 

14.76 

13.17 

175.29 

48.59 

21.42 

21.37 

11.76 

12.00 

TAP (%) 

T11 

T12 

T15 

T36 

4.23 

-8.481 

0.646 

-5.789 

0.474 

10.00 

-7.612 

0.205 

3.958 

-10 

-1.895 

-7.842 

2.887 

1.947 

4.925 

-3.280 

s(D) - 0 156.58 145.1 

p(D)  -6.16 -7.83 -11.01 

Vs(pu) - 0.1064 0.1370 0.1093 

∑𝑃𝐺 (MW) 292.88 285.193 280.30 290.435 

∑𝑃𝑙𝑜𝑠𝑠 (MW) 9.478 1.793 12.448 7.035 

∑𝐶𝑜𝑠𝑡 ($/hr) 802.404 784.901 765.433 793.869 

Table 7.  OPF results by 2 UPFC 

#. 9 & 17 

VG (p.u.) 

V1 

V2 

V5 

V8 

V11 

V13 

1. 0044 

0. 9840 

0. 9820 

0. 9899 

1.1000 

1. 0178 

PG(MW) 

PG1 

PG2 

PG5 

PG8 

PG11 

PG13 

161. 15 

43.60 

15.00 

29. 11 

14.18 

13.28 

TAP (%) 

T11 

T12 

T15 

T36 

0. 215 

2.190 

2.464 

-5. 368 

s(D) 
150.31 

141.09 

p(D) 
-7.74 

-10.8 

Vs(pu) 
0.1445 

0. 1078 

∑𝑃𝐺 (MW) 276.325 

∑𝑃𝑙𝑜𝑠𝑠 (MW) 14. 355 

∑𝐶𝑜𝑠𝑡 ($/hr) 751.822 

Table 8.  GUPFC variables (pu) 

Xs1 Xs2 Xp 𝑽𝒔𝟏
𝒎𝒂𝒙 𝑽𝒔𝟐

𝒎𝒂𝒙 Vp 𝑺𝒔𝟏
𝒎𝒂𝒙 𝑺𝒔𝟐

𝒎𝒂𝒙 𝑺𝒑
𝒎𝒂𝒙 

0.02 0.02 0.02 0.5 0.5 1.0 1.0 1.0 1.0 
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Table 9.  S–L–PF 

 Line 

# 
Fm 

bus 
To 

bus 
PF (Sft) no GUPFC (MVA) 

S Sft 

(1 GUPFC) 
S Sft 

(2 GUPFC) 

GUPFC1 
7 

9 
6 

4 

7 
-49.30 + j1.30 

34.35 + j3.63 
-50 + j 2 

22+j3 
-50 + j 2 

22+j3 
GUPFC2 27 

28 

10 21 

22 

15.77 + j 9.24 

7.60 + j 4.10 

15+j5 

7 + j4 

15+j5 

7 + j4 

Table 10.  OPF results with 1&2 GUPFC 

  GUPFC1 GUPFC2 GUPFC1& GUPFC2 

PG(MW) 

PG1 

PG2 
PG5 

PG8 

PG11 
PG13 

142.79 

43.20 
15.00 

35.00 

23.45 
12.00 

173.39 

48.16 
21.30 

20.22 

13.56 
12.00 

132.68 

39.32 
15 

35 

25.98 
12.00 

TAP (%) 

T11 

T12 

T15 
T36 

5.426 

10.00 

-9.99 
-4.261 

9.470 

-9.528 

7.535 
1.606 

-4.327 

10 

-10 
1.284 

s1(D) 83.93 153 113.44, 147.62   

s2(D) 148.53 150 137.56, 146  

p(D) -6.16 -11.8 -3.9, -7.9  

Vs1(pu) 0.0506  0.0712 0.0936, 0.1691  
Vs2(pu)   0.1425 0.080 0.0744, 0.0834  

∑𝑃𝐺  (MW) 271.438 288.63 259.977  
∑𝑃𝑙𝑜𝑠𝑠 (MW) 13.470 12.124 7.035  

∑𝐶𝑜𝑠𝑡 ($/hr) 747.011 788.064 714.672  

 

4.4. Scenario 4: Multi-Type (MT) FACTS 

For calculating OPF models with MT FACTS, the similar variables indicated directly above will 

be utilized. Combining MT FACTS with the complex PF in efficiently chosen lines (attained using 

GA) displayed in Table 11 has allowed for the determination and presentation of approaches to the 

total  C, T , T , control variables  α, s1, s2, Vs1, Vs2 and p), and ACSU of the investigated system 

in Table 12 and Table 13. 

Table 11.  S–L–PF of MT–FACTS 

 L # From B To B PF lacking FACTS S–PF through FACTS 

TCSC 6 6 2 45 MW 53 MW 

UPFC 9 6 7 (34.35 + j 3.63) MVA (30  j 5   V  

Table 12.  OPF results with 1 TCSC, UPFC 

FACTS TCSC UPFC 

L # 6 9 

VG (pu) 

V1 

V2 

V5 

V8 
V11 

V13 

1.0327 

1.0112 

0.9928 

0.9895 
1.0938 

1. 055 

PG(MW) 

PG1 

PG2 
PG5 

PG8 

PG11 

PG13 

165.20 

44.90 
15.00 

28.00 

14.03 

12.64 
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FACTS TCSC UPFC 

L # 6 9 

TAP (%) 

T11 

T12 

T15 
T36 

-2.847 

-4.826 

-3.157 
-8.043 

α 46.16 - 

XTCSC -0.0970 - 

s(D) - 151.6 

p(D) - -6.38 

Vs(pu) - 0.1315 
∑𝑃𝐺  (MW) 279.769 
∑𝑃𝑙𝑜𝑠𝑠 (MW) 12.754 
∑𝐶𝑜𝑠𝑡 ($/hr) 762.121 

Table 13.  OPF results with 1 TCSC & 1 GUPFC 

FACTS TCSC GUPFC 

L # 6 7 &9 (Bus-9) 

VG (pu) 

V1 

V2 

V5 
V8 

V11 

V13 

1.0110 

1.0056 

0.9905 
0.9869 

1.0119 

0. 9737 

PG(MW) 

PG1 
PG2 

PG5 

PG8 

PG11 
PG13 

148.16 
43.84 

15.00 

35.00 

17.09 
12.00 

TAP (%) 

T11 

T12 

T15 
T36 

2.438 

10.00 

-9.99 
-4.202 

α 45.41 - 

XTCSC -0.1075 - 

s(D) - 97.71& 145.37 

p(D) - -4.44 

Vs(pu) - 0.070& 0.1421 
∑𝑃𝐺  (MW) 271.097 
∑𝑃𝑙𝑜𝑠𝑠 (MW) 13.566 
∑𝐶𝑜𝑠𝑡 ($/hr) 740.217 

5. Conclusions 

The goal of investigated FACTS is to improve power systems' sustainability, stability, efficiency, 

and controllability. This study presents an OPF model that uses NM to minimize the GC with multiple 

and MT-FACTS tools. Applying GA, the best places and sizes for numerous and MT-FACTS tools 

have been gritty in order to reduce the GC The suggested methods worked well and reached 

convergence with the fewest number of iterations. The performance of the suggested approaches over 

a broad range of PF control in the TS has been demonstrated using IEEE 30 bus systems. Additionally, 

it has been noted that the suggested method is effective and appropriate for improved power 

management range. 
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Future research directions: 

The following points can be studied as a continue of this research: 

• The suggested F CT  tools will be used in  uture studies to develop and e pand power systems 

with thermal and renewable generating units while taking load uncertainties into account. 

• The use o  modern optimi ation techniques like the Kepler method is crucial in situations when 

renewable energy sources introduce more unpredictability and uncertainty into the power 

system, making it di  icult to identi y the optimal solution. 

Application of the investigated FACTS with recent optimizers in other IEEE systems. 

 

List of abbreviations 

Ess: Electrical systems GUPFC: Generalized unified power flow controller 

OPF: Optimal power flow FACTS: Flexible AC transmission system 

GA: Genetic algorithm SSSC: Static synchronous series compensator 

OFs: Objective functions EIA: Energy Information Administration 

PG: Power generation STATCOM: Static synchronous compensator 

LP: Linear programming TCPST: Thyristor-controlled phase shifting transformer 

NM: Newton method UPFC: Unified power flow controller 

TSs: Transmission systems SVC: Static var compensator 

VM: Voltage magnitude  TCSC: Thyristor-controlled series capacitor 

EP: Evolutionary programming TCVR: Thyristor-controlled voltage regulator 

EC: Equality constraints IC: Inequality constraints 

VS: Vector space AM: Admittance matrix 

GC: Generation cost ACSU: Additional control settings of the unit 

TL: Transmission losses TG: Total generation 

SL: Specified line PF: Power flow 
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