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1. Introduction  

Accurate energy demand estimation is crucial for ensuring sustainability and long-term 

economic prosperity in the face of rapidly increasing global energy consumption [1]. Effective 

utilization and management of energy resources are imperative to control energy demand and 

promote sustainable economic growth. Energy demand management aids in identifying energy-

saving opportunities, anticipating future needs, prioritizing energy sources, improving energy 

efficiency, formulating policies, and developing strategies for emissions reduction. 

Electrical consumption is influenced by a multitude of interrelated factors, including economic 

conditions, calendar periodicities (weekly and yearly), and meteorological variables [2]. Power load 
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forecasting is categorized into long-term, mid-term, and short-term based on the forecasting step size 

projection. Long-term forecasting, aimed at anticipating yearly and monthly demands, is often used 

for power infrastructure construction planning. However, the system's performance is significantly 

impacted by medium-short-term forecasting, which projects weekly, daily, and hourly power loads 

[3]. 

The quantity of electrical power utilized is known to be significantly influenced by weather 

conditions. Meteorological variables, such as temperature, humidity, and solar radiation, are 

generally considered significant factors [4]. Temperature and electrical power demand exhibit a non-

linear relationship, with discernible increases in power consumption observed in response to both 

decreases in temperature below a threshold and increases above a threshold [5], [6]. A similar 

relationship holds for solar irradiance and humidity. Due to the variable nature of solar irradiance, 

ambient temperature, and humidity, predicting electrical load demand remains a challenge [7]. 

Every machine learning model has its benefits and drawbacks. However, power load 

forecasting primarily relies on efficiency and accuracy [8], [9]. Since each temporary installation 

might have distinct characteristics and varying durations, classifying and predicting loads for smart 

grids is challenging [10]. Solar irradiance, wind speed and direction, humidity, and temperature are 

among the most critical climatic variables influencing electricity consumption patterns, especially in 

residential areas [8]. 

This research proposes an efficient and reliable approach for load forecasting. Given the 

continuous growth of research on Smart Grids, the use of precise and accurate load forecasting 

approaches may provide several benefits [11]: 

• Efficient management of electricity supply and demand enhances the reliability of the power 

system by empowering operators to make strategic choices for market participants. 

• Incorporating machine learning techniques with renewable energy sources can effectively 

address environmental issues such as climate change and pollution. 

• Accurate load modelling enables utilities to effectively respond to power supply demands and 

regulate operations, while proper load definition ensures appropriate actions are taken. 

This study examines the relationship between meteorological characteristics and electrical load 

demand. To investigate this relationship, a load forecasting model based on ANN, RF, and DT is 

presented. Section 2 introduces existing methods for predicting power demand and highlights the 

need to investigate the impact of weather patterns on power load demand. Section 3 outlines the 

methodology, including data collection, preprocessing, and the development of ANN, RF, and DT 

models. The performance of these models on the power load dataset is evaluated in Section 4, and 

finally Section 5 presents a comparative analysis of their forecasting capabilities across different 

seasons. 

2. Background 

Advances in machine learning research have led to the integration of techniques like neural 

networks [12]-[15] and support vector machines into power systems daily load forecasting models 

[16]-[30]. While some studies incorporate workdays and holidays into the input matrix [31], [32], 

most rely on historical data as the primary input feature. However, weather is a significant factor 

influencing electricity load demand, in addition to past trends and the nature of workdays and 

holidays. 

Several researchers have considered meteorological data in previous studies. In [33], 

temperature data was used to create a load forecast model using an ANN and bagged regression 

trees. An analysis was conducted [34] on the relationship between temperature, solar irradiance, and 

load, where the ANN model's accuracy was improved by using mutual information to select input 

features. In [35], a small town in Italy with only residential consumers was studied, using the 

Humidex indicator (a comprehensive measure of atmospheric temperature and humidity) as an input 
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to predict the regional power load. Zachariadis [36] offered a projection of Cyprus's power usage 

until 2030, derived from an econometric study of energy consumption in relation to macroeconomic 

factors, pricing, and meteorological conditions. 

Precise load forecasting is crucial for the efficient functioning of power systems, as electrical 

load is highly volatile and nonlinear. Appropriate prediction methods are necessary to forecast such 

complex signals. The common forecasting methods fall into two categories: artificial intelligence 

(AI) and techniques based on statistics. There are three main types of energy forecasting models: 

black box, white box, and grey box [37]. Community microgrid load dispatch faces several 

challenges due to the inherent instability and unpredictability of renewable energy sources. 

Consequently, several studies have examined the integration of intermittent renewable energy into 

the microgrid's load dispatch model [38]-[40]. However, few studies have been conducted on 

microgrid power demand forecasting considering weather conditions. For example, [41] attempted 

to provide a day-ahead load prediction using ambient temperature as the weather characteristic 

directly but did not examine the precise impact of other meteorological features such as solar 

irradiance and humidity. Low-power circuit design techniques [42]-[45] enable energy-efficient 

hardware implementations of machine learning models for seasonal electrical load forecasting. 

These specialized hardware accelerators can offer significant performance improvements and power 

savings when incorporating meteorological variables into load forecasting models. 

3. Methodology  

Load forecasting is a complex subject involving several parameters, such as time, 

environmental conditions, and other variables. This technology is extensively used in all sectors of 

power systems, catering to diverse fundamental needs in industrial, commercial, and household 

environments. The fluctuation of loads across various time frames has distinct characteristics. In 

general, a broader time range leads to a greater impact on variables and an increase in the 

complexity of the issue [8]. The outcomes will be examined using different ANN or machine 

learning methods. Fig. 1 illustrates the sequence of steps in the process. 

 

Fig. 1. Proposed workflow for load forecasting using ANN and ML models 
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3.1. Input Data 

Data for predicting electrical loads is obtained from publicly available databases [46], while 

meteorological data is taken from the National Renewable Energy Laboratory (NREL). The data for 

the electric power load, also known as the active power load, is generated using the hourly voltage 

(V), current (I), and power factor (pf) information accessible at the 33/11 kV substation at 

Godishala, Huzurabad, Telangana state, India. These states are selected due to their diverse climatic 

conditions, which include distinct summer, rainy, and winter seasons. This diversity is crucial for 

studying the impact of various meteorological variables on electrical load forecasting. Information 

on voltage, current, and power factor was gathered on an hourly basis between January 1, 2021, and 

December 31, 2021. The data includes hourly load, day status (0 for weekdays and 1 for weekends), 

season (1 for Winter, 2 for Summer, and 0 for Rainy), as well as hourly humidity and temperature 

information. The data range from January 1, 2021, to December 31, 2021, provides a comprehensive 

annual cycle, capturing seasonal variations essential for accurate forecasting Meanwhile, solar 

irradiance data for the same latitude and year has been obtained from the NREL. In Fig. 2, one-year 

hourly data for each feature has been divided into three seasons: Summer, Rainy, and Winter. 

There are a total of 8760 hourly load data values included within this collection. In this 

particular dataset, the load data is presented in kilowatts, the temperature is expressed in 

Fahrenheits, and the humidity is expressed as a percentage. It has been noted that the distribution of 

load data has a mean value of 2130 kW, a standard deviation of 1302 kW, a minimum load of 412 

kW, and a peak load of 6306 kW. The seasonal hourly average data of solar irradiance, humidity, 

and temperature is shown in Fig. 3 (a,b,c). The electrical load profile hourly average for all three 

seasons is shown in Fig. 3 (d), which examines that during the winter season, the load demand is 

higher compared to the rainy and summer seasons. 

 

Fig. 2. One year data division into three seasons 

Fig. 3 (a) depicts the seasonal 24-hour average solar irradiance (measured in W/m2) for the 

summer, rainy, and winter seasons. The figure illustrates the typical patterns of solar irradiance 

throughout the day across the different seasons. In the summer season, the solar irradiance levels are 

higher, peaking around midday, while in the rainy and winter seasons, the irradiance levels are 

generally lower due to cloud cover and shorter daylight hours. 

Fig. 3 (b) shows the seasonal 24-hour average humidity levels (expressed as a percentage) for 

the three seasons. The humidity patterns can vary significantly depending on the local climate and 

weather conditions. In some regions, the rainy season may exhibit higher humidity levels, while in 

others, the summer season could be more humid. Examining the humidity patterns can provide 

insights into the potential impact on electrical load, as higher humidity levels may increase the 

demand for air conditioning and dehumidification. 
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Fig. 3 (c) presents the seasonal 24-hour average temperatures (measured in degrees Fahrenheit) 

for the summer, rainy, and winter seasons. Temperature is a crucial factor influencing electrical load 

demand, as both heating and cooling requirements are directly impacted by ambient temperatures. 

The figure allows for the analysis of temperature patterns throughout the day, enabling a better 

understanding of the potential load fluctuations caused by temperature variations. 

Fig. 3 (d) illustrates the seasonal 24-hour average electrical load (measured in kilowatts) for the 

three seasons. This figure provides a visual representation of the actual electrical load demand 

patterns observed during the summer, rainy, and winter seasons. By examining this figure, it 

becomes evident that the winter season exhibits higher load demand compared to the rainy and 

summer seasons. This observation could be attributed to factors such as increased heating 

requirements during the winter months or specific regional characteristics that influence energy 

consumption patterns. 

 

(a) Seasonal 24-hours average solar irradiance in W/m2 

       
(b) Seasonal 24-hours average humidity in %age 
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(c) Seasonal 24-hours avg temperature in fahrenheit 

 

(d) Seasonal 24-hours average electrical load in KW 

Fig. 3. Seasonal patterns of meteorological variables 

Fig. 4 presents the correlation coefficient matrix, which provides a visual representation of the 

strength and direction of the linear relationships between the different variables in the dataset. The 

correlation coefficient is a statistical measure that ranges from -1 to 1, where -1 indicates a perfect 

negative correlation, 0 indicates no correlation, and 1 indicates a perfect positive correlation. In the 

context of this study, the correlation coefficient matrix highlights the associations between the 

meteorological variables (solar irradiance, humidity, and temperature) and the electrical load 

demand. The correlation coefficient between solar irradiance and electrical load reveals the degree 

to which higher levels of solar irradiance are related to increased electrical load demand, potentially 

due to factors such as increased use of air conditioning or other cooling systems. Similarly, the 

correlation between temperature and electrical load can shed light on the impact of temperature 

fluctuations on energy consumption patterns. 
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Fig. 4. Correlation coefficient matrix 

3.2. Data Preprocessing 

Data preprocessing consists of cleaning, smoothing, and reconstructing the data to achieve 

better prediction accuracy. If load data is absent for Monday, the average load for Saturday and 

Tuesday is considered. Likewise, if load data is missing on Saturday, the average load for Friday 

and Monday is considered. Outliers in a dataset are unusual numbers that have the potential to skew 

statistical analysis. Outliers can lower data variability and, consequently, statistical power. 

Eliminating outliers can improve the results' statistical significance by counteracting erroneous 

values in the dataset. To remove such outlier data, the Z-Score is used. The Z-Score method is 

chosen for outlier detection due to its effectiveness in identifying data points that deviate 

significantly from the mean; it's calculated as given in Equation (1): 

 
𝑍 − 𝑆𝑐𝑜𝑟𝑒 =

𝑆𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 − 𝑀𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 (1) 

By establishing a threshold for outlier elimination, the Z-Score is computed for each sample in 

the collection. Data points with a Z-Score exceeding a predefined threshold (typically ±3) are 

considered outliers and are removed. 

Normalization helps ANN and RF algorithms learn the best parameters for each input more 

rapidly. To avoid deceptive results, inputs should approximately fall within the range of -1 to 1. This 

can be achieved using the min-max normalization method. Min-max normalization is used to scale 

the data to a fixed range (0-1), which helps improve the performance of machine learning 

algorithms. The formula for min-max normalization (S) is given in Equation (2): 

 
𝑆 =

𝑋 − 𝑋𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑋𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑋𝑚𝑖𝑛𝑖𝑚𝑢𝑚
 (2) 

Where X is the original value, and X_minimum and X_maximum are the minimum and 

maximum values in the dataset, respectively. 

3.3. Model Development and Electrical Load Forecasting Algorithms  

The load forecasting has been achieved using ANN and machine learning algorithms such as 

support vector machine (SVM) and multiple linear regression (MLR). For the given methods the 

total number of independent variables are six which consist of day, hour, temperature (0F), humidity 

(%age), weekday/weekend (0/1) and solar irradiance (W/m2) while the dependent variable is  

electrical load (KW). Mean absolute percentage error (M), root mean square error (R), and mean 

squared error (E) are the metrics that have been employed in order to evaluate the performance of 

the model shown in Equation (3), Equation (4) and Equation (5). 
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𝑅 = 𝑠𝑞𝑟𝑡 (

1

𝑁
) ∗ ∑ ((𝑋𝑖𝑎𝑐𝑡𝑢𝑎𝑙

−  𝑋𝑖𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
)2) (4) 

 
𝐸 = (

1

𝑁
) ∗ ∑ ((𝑋𝑖𝑎𝑐𝑡𝑢𝑎𝑙

− 𝑋𝑖𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
)2) (5) 

Where 

𝑁 is the number of data points 

𝑋𝑖𝑎𝑐𝑡𝑢𝑎𝑙
, 𝑋𝑖𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

 are the actual and predicted value for the ith data point 

3.3.1. ANN Model for Electrical Load Forecasting 

Artificial neural networks are a specialized branch within artificial intelligence (AI). These 

systems are engineered to replicate the functionality of the human brain through the analysis and 

processing of information in a manner that closely resembles human cognition. ANNs are 

biologically inspired computational models that consist of interconnected nodes or 'neurons' 

organized in layers. They are capable of learning complex patterns and relationships in data. In this 

work, the power usage pattern has been predicted using artificial neural networks. In ANNs, the 

output is determined by the accumulation of neurons in the input and hidden layers. For this 

investigation, the data has been partitioned into three distinct sets: training (70% of data), testing 

(15% of data), and validation (15% of data). The mathematical model of ANN is represented as 

Equation (6): 

 
𝑦𝑗 = 𝑓 (∑ 𝑊𝑖𝑗

𝑛

𝑖=1

𝑋𝑖  +  𝑏𝑗) (6) 

Here, X and y are the input and output values, respectively, while W and b represent weight and 

bias. The input feature quantity dictates the input layer's dimensions. Utilizing a standard neural 

network with a single hidden layer, the prediction has been executed. The number of hidden neurons 

is established via the trial and error method. The ANN architecture for all three seasons is shown in 

Fig. 5, having six input nodes and one output node. The total number of hidden layers is two, and 

the ReLU activation function is used at each layer. The ReLU activation function is used in the 

hidden layer due to its effectiveness in mitigating the vanishing gradient problem. A dual hidden 

layer is chosen as it provides a good balance between model complexity and computational 

efficiency for this particular forecasting task.  

 

Fig. 5. Structure of an ANN model 
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3.3.2. Random Forest Model for Electrical Load Forecasting 

Random Forest is an ensemble learning technique that utilizes decision trees (specifically, the 

CART algorithm) as the basic models [47]. It is applicable for both regression and classification 

tasks. This work primarily focuses on using RF regression based on regression trees for prediction, 

as shown in Fig. 6. RF overcomes common issues seen in individual decision trees, such as unstable 

splits and a lack of smoothness [48]. 

It integrates bagging with a stochastic subspace technique. The primary objective of the random 

subspace technique is to enhance the heterogeneity across trees by constraining them to operate on 

distinct random subsets of the complete predictor space. Every tree inside the forest is constructed 

using a bootstrap sample derived from the original dataset, thus introducing an additional element of 

variability. The use of random predictors in the nodes of bagged trees serves to decorrelate the trees, 

leading to enhanced prediction accuracy and reduced model variance.  

Seasonal 
Training 

data

Take bootstrap sample 
from the training data

Train a decision tree 
from each sample

Mean Value

Data 
Sample

Data 
Sample

Data 
Sample

Data 
Sample

Final Regression 
Model Output  

Fig. 6. RF model for regression 

3.3.3. Decision Tree Model for Electrical Load Forecasting 

Decision tree are tree-like models that make decisions based on asking a series of questions 

about the features in the data. The structure is equivalent to that of a “flowchart”, with each internal 

node represented by a rectangle and the leaf nodes represented by an oval. Each internal node has 

splits, which test the value of an expression of the attributes, and each internal node has at least two 

offspring nodes. 

4. Results 

This section presents the performance of the three machine learning models - Artificial Neural 

Network, Random Forest, and Decision Tree - in forecasting electrical load across three seasons: 

summer, rainy, and winter. 

4.1. ANN Model Performance 

The ANN model showed strong performance across all seasons, with particularly good results 

for summer and winter. The regression values for all the seasons are mentioned in Fig. 7. These 
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graphs illustrate the correlation between predicted and actual values for each season, with higher R-

values indicating better model performance.The performance matrix of the ANN is shown in Table 

1 for the summer, rainy, and winter seasons. The rainy season showed slightly lower performance 

with an R-value of 0.85, possibly due to the complexity of capturing the intricate patterns in the data 

during this period. The MAPE values for summer (9.01%) and winter (9.08%) are significantly 

lower than for the rainy season (12.90%), indicating more accurate predictions for these seasons. 

  
(a) Rainy season (b) Summer season 

 
(c) Winter season 

Fig. 7. R-Value of training, validation and testing 

Table 1.  Performance evaluation of ANN predictive model of load forecasting 

Season R-Value MAPE RMSE MSE 

Summer 0.96 9.01 297.12 1.5x105 

Rainy 0.85 12.90 461.34 2.1x105 

Winter 0.96 9.08 302.34 1.5x105 

 

4.2. Random Forest Model Performance 

The RF model also demonstrated strong predictive capabilities, particularly for summer and 

winter seasons. These R-values for the summer, rainy, and winter seasons are shown in Fig. 8. 

Table 2 presents the performance matrix of the RF Model for the three distinct seasons: 

summer, rainfall, and winter. Significant R-values and relatively low MAPE values indicate that the 

RF model exhibits satisfactory overall accuracy during both the summer and winter seasons, similar 

to the ANN model. However, the RF model's performance is also lower for the rainy season 

compared to the other seasons. 



1102 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 4, No. 3, 2024, pp. 1092-1108 

 

 

Bali Singh (Seasonal Electrical Load Forecasting Using Machine Learning Techniques and Meteorological Variables) 

 

 
 

a) Summer (b) Rainy 

 
(c) Winter 

Fig. 8. R-Value validation 

Table 2.  Performance evaluation of random forest predictive model of load forecasting 

Season R-Value MAPE RMSE MSE 

Summer 0.97 7.02 210.3 4.4x104 
Rainy 0.85 12.88 457.77 2.0x105 

Winter 0.93 8.484 378.34 1.4x105 

 

4.3. Decision Tree Model Performance 

The The DT model, while effective, showed slightly lower performance compared to ANN and 

RF models. The R-values for the summer, rainy, and winter seasons are shown in Fig. 9. 

Table 3 presents the performance matrix of the DT Model for each of the three separate 

seasons: summer, winter, and rains. The DT model has significant R-values and relatively low 

MAPE values, indicating good overall accuracy during both the summer and winter seasons. 

However, similar to the ANN and RF models, the DT model's performance is lower for the rainy 

season compared to the other seasons. 

Table 3.  Performance evaluation of decision tree predictive model of load forecasting 

Season R-Value MAPE RMSE MSE 
Summer 0.95 5.63 281.81 7.9x104 

Rainy 0.81 10.1 519.19 2.6x105 

Winter 0.91 8.484 433.89 1.8x105 
 



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

1103 
Vol. 4, No. 3, 2024, pp. 1092-1108 

  

 

Bali Singh (Seasonal Electrical Load Forecasting Using Machine Learning Techniques and Meteorological Variables) 

 

  

a) Summer (b) Rainy 

 
(c) Winter 

Fig. 9. R-Value Validation 

5. Comparative Analysis and Discussions 

Table 4 demonstrates that the artificial neural network and random forest models consistently 

provide accurate load predictions. Nevertheless, there are instances where the forecasts exhibit less 

precision. During the summer season, the ANN model tends to overestimate the demand by around 

100 kilowatts (kW). The mean load prediction in all seasons is almost the same for both the ANN 

and RF models. The comparative analysis of the actual and predictive models for the seasonal 

hourly average electrical load is shown in Fig. 10. 

Table 4.  Comparative analysis of ANN and RF model for three seasons 

Season Method Minimum Load (KW) Maximum Load (KW) 
Mean Load  

(KW) 

Summer 

Actual 533.3747 6089.724 1932.883 

ANN 712.4548 5691.507 1933.317 
RF 708.0106 5537.794 1932.507 

Rainy 

Actual 458.0201 6306.206 2001.276 

ANN 218.9659 6184.378 2001.45 

RF 616.4439 5522.614 2000.03 

Winter 

Actual 412.0341 5779.171 2462.301 

ANN 586.4569 5476.03 2463.136 

RF 514.4936 5449.614 2462.173 
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The results indicate that the ANN and RF models perform better in predicting electrical loads 

during the summer and winter seasons compared to the rainy season. This discrepancy could arise 

due to two potential reasons:  

• The abundance of data pertaining to the summer and winter seasons, providing more 

comprehensive training data; or  

• The superior ability of the models to accurately represent the intricate patterns within the data 

for these particular seasons, as the weather conditions during summer and winter may exhibit 

more consistent and predictable trends. 

 

(a) Summer 

 (b) Rainy 
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(c) Winter 

Fig. 10. Comparative analysis of actual and predictive model for seasonal hourly average electrical load 

(KW) 

6. Conclusion 

This study area has substantial potential to tackle crucial difficulties in the energy sector and 

provide a more sustainable and dependable electrical system. Through the integration of 

sophisticated machine learning algorithms and extensive analysis of meteorological data, precise and 

dependable predictions of seasonal electrical load may be achieved, thereby facilitating effective 

management of power grids and fostering a more sustainable energy landscape. The Artificial 

Neural Network and Random Forest models exhibit superior performance in forecasting load during 

the summer and winter seasons compared to the rainy season. This discrepancy may arise due to the 

abundance of data pertaining to the summer and winter seasons, or due to the superior ability of the 

models to accurately represent the intricate patterns within the data for these particular seasons. 
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