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1. Introduction 

Globally, we strive to transition to a low-carbon life through the use of renewable energy sources 

(RESs), which provide electricity at reasonable prices. The goal of becoming emissions-free by the 
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 In recent years, significant improvements have been made in the load 

frequency control (LFC) of interconnected microgrid (MG) systems, 

driven by the growing demand for enhanced power supply quality. 

However, challenges such as low inertia, parameter uncertainties, and 

dynamic complexity persist, posing significant hurdles for controller 

design in MGs. Addressing these challenges is crucial as any mismatch 

between demand load and power generation inevitably leads to frequency 

deviation and tie-line power interchange within the MG. This work 

introduces sophisticated optimization techniques (grey wolf optimization 

(GWO), whale optimization algorithm (WOA), and balloon effect (BE)) 

for LFC, focusing on the optimal online tuning of integral controller gain 

(Ki) for controlled loads. The WOA regulates the frequency of the system 

so variable loads can be accommodated and 6 MW of PV is added to the 

MG. A PV and a diesel generator-powered isolated single area MGs with 

electrical random loads are managed by the adaptive controller by 

regulating the frequency and power of the PV. Online tuning of integral 

controllers is possible using the WOA. A comparison is carried out 

between the WOA+BE and three other optimizers, namely the GWO, 

GWO+BE method, and the WOA. This paper shows the effect of add BE 

identifier to standard WOA and GWO. MATLAB simulation results prove 

that the BE identifier offers a significant advantage to the investigated 

optimizers in the issue of adaptive frequency stability even when 

disturbances and uncertainties are concurrent. 
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mid-century or shortly thereafter is being pursued by an increasing number of countries [1], [2]. 

Currently, conventional power generation methods, particularly fossil fuels, are causing major 

climatic problems [3]. Among scientists and researchers, solar, hydrogen and wind are considered to 

be sustainable and attractive renewable resources (RE) [4]-[6]. Many agricultural and industrial 

activities require reliable and clean energy sources, which can be obtained from renewable sources. 

Additional benefits include their free and economical nature and their role in promoting environmental 

sustainability [7]. 

Providing consumers with reliable, efficient and secure electricity is the primary purpose of a 

power system. Consumers have power requirements ranging from a few tens of kilowatts for domestic 

use to hundreds of megawatts for industrial use. Although the power system is vast and intricate, it 

comprises an electrical network encompassing generation station, transmission lines, distribution 

networks, and loads spread across a considerable area [8]-[10]. Depending on the needs of consumers, 

the load on the power system changes from time to time. For the power system to remain stable and 

operate reliably, well-designed controllers are required to regulate the system variations.                                                                                 

As known, active power greatly influences frequency and reactive power greatly influences voltage. 

Thus, microgrid control issues can be separated into two independent problems. In one case, active 

power is regulated along with frequency, and in another case, reactive power is regulated along with 

voltage. Load frequency control (LFC) integrates both active power control and frequency regulation 

[11], [12]. 

The subject of LFC has been extensively researched and studied over a considerable period 

within power systems. The LFC plays a crucial role in ensuring the reliability of a power system as 

an ancillary service with changes in structure of the system and the escalating size and intricacy of 

interconnected systems, its significance has escalated [13], [14]. The total production of power must 

match the total load demand and associated system losses for interconnected power systems to operate 

efficiently [13]. Therefore, when the demand deviates by a small amount from its nominal value, the 

operating point of the power system changes, which may result in deviations in the nominal frequency 

of the system and scheduled tie-line power exchanges, which may result in undesirable effects [15]. 

Optimal control theory was used to consider a dynamic aspect of LFC and ref., [16] formulates the 

problem as a parameter optimization problem. A system transient is minimized and the control action 

minimized in accordance with the steady state, dynamic limit, and area decentralization by finding the 

proportional and integral gain of a PI controller. A frequency control method for the MG is of great 

importance due to its high absorption capacity as well as its potential impact on the MG [17]. 

Therefore, in an isolated MG, a robust controller that performs well under a variety of conditions is 

essential [18]. As far as practicable, LFC maintains a balanced power output within parameters that 

deviate from the nominal value and within parameters that allow it to function dynamically in a fashion 

that is practical [19]. 

In LFC applications, integral controller (I) is commonly used to adjust gain offline. However, 

this controller yields poor dynamic performance with changing the load and system parameters. This 

problem has been solved by proportional integral (PI) controllers with fixed parameters [20]. Several 

types of controllers have been used to formulate a better LFC response, including model predictive 

control [21], adaptive control [18], and conventional PID control [19]. Further, there have been a 

number of robust, optimal, and intelligent control methods discussed for LFC [22]-[24]. An observer-

based optimizer with unknown inputs has also been presented in [25]. There have been several 

industrial applications of WOA for optimizing gains of conventional controllers [26]. PI-FOPID 

controllers with WOA can improve the frequency response of hybrid MGs. Also comparing the results 

of WOA with GWO based on multi-layer perceptron’s (MLPs) was done in [27], [28]. As a solution 

to this issue, this study recommended adjusting the balloon effect (BE) for greater sensitivity to 

disturbances and parameter variations [29]. 

In this study, an algorithm combining WOA and BE is proposed for determining adaptive 

frequency regulation in smart MG. Models include a combination of diesel generators, electrical loads, 

and PV systems. In this study we examine the ability of the (WOA+BE) technique to deal with 
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fluctuations in frequency by incorporating both random demand loads and PV system. Furthermore, 

it is compared with, GWO, fixed integral controller, standard WOA and GWO+BE optimizer to show 

its robustness and accuracy. In this work, there are a number of outstanding features, including: 

• An online adaptive LFC is generated using the WOA+BE optimizer and the output of a simplified 

MG transfer function. 

• We discuss the effectiveness of the WOA + BE identifier in optimizers that are used to regulate 

the integral controller's frequency and the effectiveness of a GWO + BE optimizer for MG. 

2. Investigated Dynamics Model and Applied Optimizers 

2.1. Power System Dynamics Model 

In the proposed MG power system as in (Fig. 1), the dynamic model is represented by the next 

equations [30]. A Load-generator dynamic relationship between supply error ∆Pd -∆PL and frequency 

deviation (∆f) can be expressed as: 

 ∆𝑓 = (
1

𝑀
) . ∆𝑃𝑑 − (

1

𝑀
) . −∆𝑃𝐿 − (

𝐷

𝑀
) . ∆𝑓                                                        (1) 

The diesel generator’ dynamic can be expressed as: 

 ∆𝑃𝑑 = (
1

𝑇𝑑
) . ∆𝑃𝑔 − (

1

𝑇𝑑
) . ∆𝑃𝑑    (2) 

Governors' dynamics can be described as follows: 

 ∆𝑃𝑔 = (
1

𝑇𝑔
) . ∆𝑃𝑐 − (

1

𝑅. 𝑇𝑑
) . ∆𝑓 − (

1

𝑇𝑔
) . ∆𝑃𝑔  (3) 

 

Fig. 1. Block diagram of the model of microgrid power system 

where ∆Pg: The governor output change;  ∆Pd: Changing the diesel power;  ∆f: changing the 

frequency;  ∆PL changing the load;  ∆Pc: modifying the supplementary control;  M: Represents the 

equivalent inertia constant; D: Denotes the equivalent damping coefficient; R: Stands for the speed 

drop characteristic;  Tg: Represents the governor time constant; Td: Signifies the turbine time constant 

t and (∆f, ∆Pd, ∆Pg) equal to (
df

dt
, 

dPd

dt
, 

dPg

dt
), respectively. 

2.2. WOA Method 

Humpback whales emulate the social behavior of whales using the WOA. Using bubble-net 

hunting as an inspiration, the algorithm was developed. There are spindle cells in whales' brains that 

are similar to those in human brains, say Hof and Van Der Gucht [27]. As a result of these cells, 
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humans are able to judge, feel emotion, and have social behavior . It is believed that whales are highly 

intelligent animals that move . Taking its inspiration from humpback whale hunting behavior, the 

WOA algorithm has been developed. A humpback whale usually hunts krill’s or small fish near the 

surface of the sea. The bubbles are created along a circle or 9-shaped path as they swim around the 

prey. Following is a description of the mathematical model for WOA: 

• Encircling the prey. 

• Bubble net attack. 

• Search for prey.  

In order to catch prey, humpback whales will circle them as soon as they identify their location. 

In the WOA algorithm, the assumption is that the current best candidate solution is close to the optimal 

design since the exact optimal position in the search space is unknown. Fig. 2 illustrates a flowchart 

of the proposed whale optimization algorithm [31]. 

 

Fig. 2. Flowchart of the WOA 

2.3. GWO Method 

Grey wolves (GWs), belonging to the canidae family, are apex predators and exhibit social 

hierarchy, tracking, encircling, and attacking prey, which are mimicked in the GWO. GWs packs are 

the most common form of life for GWs. The group size is 5-12 on average. It is particularly interesting 

to note how rigid their social hierarchy as in [32]. Alpha (α) is male or female who leads the group. It 

is primarily the α who decides where and when to hunt, sleep, and wake up . There is a consensus 

between the α and the pack regarding all decisions. Betas (β) is the second level of the GW hierarchy . 
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Beta wolves assist the α wolf with decisions and other activities in the pack. It is probable that one of 

the α will pass away or become very old, so the β wolf can be the best candidate to be the α wolves 

should be respected, but β wolves should also command lower-level wolves [33]. The third level of 

the GW hierarchy is delta wolves (δ). They have to subjected to the first and second levels of the GW 

hierarchy (α and β), but they predominate the fourth level of the GW hierarchy (ω). They are hunters 

who help the α and β when hunting prey and they provide the food for the herd [33] . The lowest 

ranking GW is ω. In this case, the ω acts as a scapegoat. A dominant GW must always submit to an ω 

wolf . It is the last group of GW that is allowed to eat . Despite the fact that it may appear that the ω 

does not have a significant role in the pack, there have been reports that when the ω is lost, the entire 

pack suffers internal problems and fighting [33] . GWs also exhibit a group hunting behavior in 

addition to their social hierarchy . The computational flowchart of adaptive GWO in shown in Fig. 3. 

The following are the main phases of GW hunting according to [33]: 

• In the first step, the prey is tracked, chased, and approached. 

• Encircling the prey and harassing it until it remains motionless. 

• Approach the prey and attack it. 

 

Fig. 3. Flowchart of adaptive GWO 

2.4. BE Identifier (BEI) Method  

The BE is the result of air expanding the balloon. A system challenge like disturbances and 

parameter uncertainty can greatly affect Gi(s) through the BE. The BEI affects the objective function 

of a strategy at any iteration, as illustrated in Fig. 4-a. As a result, this method enhances the algorithm 

process [29]. Any iteration (i) of MG will have the following online transfer function: 

 𝐺𝑖(s) =
𝑌𝑖(𝑠)

𝑈𝑖(𝑠)
          (4) 

Additionally, G𝑖(s)  depends on its previous value𝐺𝑖−1(𝑠). 𝐴𝐿𝑖  Is the gain, while 𝐺0(𝑠)  is the 

nominal process transfer function. 

 Gi(s) = 𝐴𝐿𝑖𝐺𝑖−1(𝑠)  (5) 

 𝐺𝑖−1(𝑠) = 𝜌𝑖𝐺0(𝑠)                                          (6) 
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Where 

 𝜌𝑖 = ∏ 𝐴𝐿𝑛

𝑖−1

𝑛=1
  (7) 

 𝐺𝑖(𝑠) = 𝐴𝐿𝑖𝜌𝑖𝐺0(𝑠)                                          (8) 

The coupled optimization technique is positively affected by BE as a system identifier that detects 

system difficulties, such as load disturbances and system parameter changes. 

 
(a) 

 
(b) 

Fig. 4. a) BEI method, b) model of MG for any optimization+BE 

2.5. Optimizer Based BEI 

The simplified MG model shown in an optimization strategy-based BEI is discussed, with Fig. 

4-b aiding in calculating parameters for a second-order closed-loop system [29]; 

 
T. F =

𝑤𝑛2

𝑆2+2𝜂𝑊𝑛+𝑊𝑛2 =
𝐾𝑖

𝑀𝑜

𝑆2+(
(𝐷𝑜+

1
𝑅𝑜)

𝑀𝑜
)𝑆+

𝐾𝑖

𝑀𝑜

                         
(9) 

where Do, Ro and Mo are the nominal values of D, R and M, respectively. 
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 𝜔𝑛 = √Ki/Mo, 𝜂 =

(𝐷𝑜+
1

𝑅𝑜
)

𝑀𝑜

2𝜔𝑛
          (10) 

 𝑇𝑟 =
𝜋−√(1−𝜂2)

𝜔𝑛√(1−𝜂2)
, 𝑇𝑠 =

4

𝜂𝜔𝑛
, 𝑀𝑃 = 𝑒

−𝜋 𝜂

√(1−𝜂2)
                                                                    (11) 

This represents the objective function of the optimizer-based BEI. 

 𝐽 = 𝑚𝑖𝑛 ∑(𝑇𝑟 + 𝑇𝑠 + 𝑀𝑃)                                           (12) 

The 𝐽 of the optimizer-based BE depends on 𝐴𝐿𝑖 and 𝑘𝑖 to tackle system challenges. 

3. Results and Discussion 

For tuning LFC controllers of small isolated power systems, a modified technique optimizer +BE 

is proposed. The simulation tests are performed using MATLAB/Simulink. Fig. 5 show a proposed 

20MW diesel generator for the MG. Table 1 and Table 2 present the nominal parameters of the system 

and the parameters used in the WOA, respectively. In addition, Table 3 lists the parameters of the 

applied GWO.   

 

Fig. 5. The investigated MG system 

Table 1.  Parameters of the MG under study 

Symbols Unit Value 

D Pu/Hz 0.015 

H=(M/2) 
R 

Pu.sec 
Hz/Pu 

0.08335 
3 

Tg 

Td 

Sec 

sec 

0.08 

0.4 

Table 2.  Parameters of the WOA 

Symbols Value 

Population Size (K) 5 

Maximum Iteration (IT max) 100 

A 2 
Initial Values for Design Variables (Ki) [0.040,0.025,0.017,0.08,0.030] 

3.1. First Case: Load Change 

Testing is carried out using nominal parameters and step-by-step load changes in this case . This 

case involves changing the load from 0 pu to 0.02 pu at 3 seconds. Also considered are the WOA + 
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BE and GWO + BE dead-bands of the governor, in addition to the turbine GRC.  It is 10% per minute 

for the turbine generation rate constraints (GRC) while 0.05 pu for the governor dead-band [30] . As 

shown in Fig. 6, system frequency deviation changes when integrated controllers with fixed 

parameters, adaptive integral controllers using WOA, GWO, GWO+BE and WOA+BE are applied. 

As compared to using an integral controller with fixed parameters, GWO or WOA, the results indicate 

that Mp can be minimized to approximately 10% when using normal (WOA or GWO) +BE. 

Table 3.  GWO parameters 

Symbols Value 

Population Size (K) 5 

Maximum Iteration (IT max) 50 

Convergence constant (a) (2) 

 

 

(a) 

 

(b) 

Fig. 6. The system response for case 1 includes: (a) frequency deviation, and (b) column charts depicting 

settling times 

3.2. Second Case: Change in System Parameters 

Evaluate a proposed control scheme considering variations in parameters. The demand load 

remains constant, while the time constant of the power system is increased by 200%. Additionally, D 

is reduced to 0.08 pu MW/Hz, and the time constant is further increased by 200%. In Fig . 7, five 

different controllers are compared (fixed I, tuned by WOA, tuned by GWO, GWO+BE and 

WOA+BE). Based on Fig. 7, the frequency response of the fixed-parameter I controller and GWO are 

deemed unacceptable. WOA demonstrates effectiveness in addressing these issues. Moreover, 

systems employ the proposed WOA+BE exhibit superior performance compared to those using the 
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standard WOA. Similarly, the performance of the proposed GWO+BE system surpasses that of the 

standard GWO. Additionally, system with proposed WOA+BE demonstrates best performance and it 

is recommended to be applied to such case of study. 

 
(a) 

 
(b) 

Fig. 7. System response for case 2: (a) frequency deviation, (b) column charts of settling times 

3.3. Third Case: Impact of Integrating PV System 

The system has been tested under multiple operating conditions. An additional 6 MW PV 

generator is added to the MG as an additional generation source while testing with variable load and 

nominal parameters. PV power is illustrated in Fig. 8-a. Represented in Fig. 8-b are the comparisons 

between five different controllers (fixed I, tuned by WOA, tuned by GWO, GWO+BE and WOA+BE) 

Fig. 8-c illustrates the change in system frequency deviation when applying GWO, using proposed 

GWO+BE, applying WOA and using proposed WOA+BE. According to the Fig. 8-d, the GWO 

exhibit the most favorable frequency response for the system when paired with the conventional 

controller.  

 
(a) 
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(b) 

 
(c) 

 
(d) 

Fig. 8. The system response for case 3 includes: (a) PV power, (b) frequency deviation using fixed I, WOA, 

and GWO, (c) frequency deviation by using WOA, WOA+BE, GWO and GWO+BE and (d) maximum 

frequency deviations 

Additionally, integrating WOA with BE yields better performance than the standard WOA 

approach. Also, the proposed GWO+BE system performs better than standard GWO. Additionally, 

the proposed WOA or GWO+BE system gives good performance and fastest response times. From 

the results, in such case of penetrations, GWO+BE is recommended to be applied. 
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4. Conclusion 

The system performance has been impacted by a number of sporadic disruptions, such as diesel 

generators, loads, and PV, as well as modifications to the system constant parameters. An MG with 

30% PV was looked upon. An adaptable LFC mechanism was proposed in this work using WOA+BE 

and GWO + BE. Unlike the normal controller, the WOA + BE control method allows frequency 

regulation even in the presence of load disturbances and parameter uncertainty. The results attained 

with the suggested controller were compared to those attained with alternative controllers (adaptive 

controller with WOA, GWO, and GWO+BE, and traditional I controller). WOA+BE and GWO+BE 

exhibiting enhanced efficacy in frequency regulation in the face of perturbations and uncertainty in 

parameters. given that the majority of intelligent and classical controllers do not ensure sufficient 

performance throughout a broad variety of operating situations. Through the use of the WOA+BE, 

many uncertainty circumstances are avoided. The frequency deviation responses are used to assess 

the performance of a controller. The fixed-parameter I controller's and GWO's frequency response is 

considered unsatisfactory. WOA, however, appears capable of handling these problems well. In 

addition, systems that use the suggested WOA + BE perform better than those that use the standard 

WOA alone. In a similar vein, the suggested GWO + BE system performs better than the GWO 

standard. BE increases WOA, and GWO improves LFC and responds better. To improve LFC and 

lessen oscillations, a controller with gains adjusted by WOA+BE is advised. 
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