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1. Introduction  

With the rapid development of computer technology, electronic technology, and control theory, 

more and more linear motors are employed in various industrial applications, such as 

microelectromechanical systems, precision metrology, industrial robots, machine tools, semi-

conductor manufacturing systems, etc [1]-[3]. The main features of PMLSM are high force density, 

low losses, high dynamic performance, fast response, and most importantly, high positioning 
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precision associated with mechanical simplicity. In the last years, there have been numerous 

progresses in the development of controllers for PMLSMs as listed below [4]-[6].  

Ref. [7] used the sliding mode (SM) state observer to replace the speed sensor and the super 

twisting SM controller (SMC) is used in the loop control of speed and current. The use of high-order 

SMC features effectively reduces the chattering of the system and reduces the impact of the 

observation error brought by the observer on the system. To solve the chaotic phenomenon problem 

in the PMLSM, ref. [8] used a control scheme combining a radial basis function neural network 

(RBFNN), adaptive backstepping method, and particle swarm optimization (PSO) algorithm. 

RBFNN identification and PSO optimization have been proposed for PMLSM to get out of chaos. 

The PSO-RBFNN controller utilized RBFNN to identify the unknown parameters in PMLSM and 

applied PSO to improve the parameters in the controller. In [9]-[11] a nonlinear robust optimal 

control (NROC) scheme for an uncertain two-axis motion control system via adaptive dynamic 

programming (ADP) and NNs has been proposed. The two-axis motion control system is an X-Y 

table actuated by PMLSM servo drives. The motions of the tracking contour in the X-axis and Y-

axis of the X-Y table are stabilized through feedback linearization control (FLC) laws. However, the 

control performance may be destroyed due to parameter uncertainties and compounded disturbances. 

Therefore, to improve the robustness of the control system, an NROC has been designed and realized 

to achieve this purpose.  

Ref. [12] developed and realized a new fractional-integral sliding surface. The fuzzy fractional-

order SMC has been developed to observe uncertainties, while an adaptive fuzzy reaching regulator 

is designed to concurrently compensate for observation deviations and suppress the chattering 

phenomenon. Ref. [13] realized the adaptive backstepping control for the PMLSM servo drive. To 

overcome the impacts of system uncertainties in the backstepping controller, an adaptive NN has 

been exploited to estimate the uncertainty and provide necessary compensation in the control effort. 

Refs. [14]-[16] implemented experimentally the position tracking control of two PMLSMs-based 

motion control systems. Refs. [17], [18], proposed using an adaptive wavelet NN controller to track 

periodic reference trajectories by controlling the position of a PMLSM. The adaptive wavelet NN 

control system makes use of a wavelet NN that can accurately approximate the unknown dynamics 

of the PMLSM. Additionally, it makes use of a resilient term to address disturbances and the 

unavoidable approximation mistakes brought on by the finite number of wavelet basis functions.  

A robust fuzzy NN-SMC based on computed torque control design for a two-axis motion control 

system has been presented in [19]-[23]. The two-axis motion control system is an x-y table composed 

of two PMLSMs. Refs. [24], [25], described and compared three distinct control algorithms: self-

tuning adaptive control, model reference adaptive control, and backstepping adaptive control. A 

reliable nonlinear controller for force and position control of a PMLSM in an extended region has 

been presented in [26], [27]. To create a robust nonlinear controller that can maintain the drive 

system's robustness in the face of all parameter variation and uncertainties, an optimal backstepping 

controller was first designed using an adaptive backstepping control approach. Next, the 

backstepping control and the artificial neural network were combined, where the artificial NN was 

used to estimate the complex nonlinear function of the PMLSM in the extended region. Refs. [28]-

[31], proposed and realized the observer-based backstepping control of linear stepping motors.  

In [32], [33], a hybrid controller for PMLSM using adaptive backstepping SMC was presented. 

Considering the lumped uncertainties with parameter variations and external disturbances for actual 

PMLSM drives, a backstepping SMC law was derived by the backstepping design technique. 

However, the bound of the lumped uncertainty was difficult to obtain in advance in practical 

applications. An adaptive law was proposed to adapt the value of the lumped uncertainty. The 

dynamic surface backstepping SM position control method of PMLSM was presented in [34]. Due 

to the presence of a weakness in a backstepping method that is a complexity of control law caused 

by achieving the derivation of the virtual control. The dynamic surface control method solved this 

problem by calculating the derivative of the virtual control using the first-order integral filter [35], 

[36]. Refs. [37], [38], implemented the adaptive backstepping controller design for a position control 
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system of PMLSM using the digital signal processor. Ref. [39] proposed the sensorless direct thrust 

force control (DTFC) of PMLSM. A modified stator flux estimator developed by the use of an 

adaptive mechanism and correction factors is devoted to measuring the stator flux linkage and the 

mover's position. The parameters of the flux estimator are adjusted in advance through an offline 

identification process to increase the accuracy of estimation. 

Based on the principle of backstepping control and applying the space vector modulation to 

achieve a fixed switching frequency to have a satisfactory result in all operating conditions, a new 

adaptive backstepping recursive controller is proposed to overcome the problem of the difficulty in 

algorithm law, an adaptation law is produced to solve the problem of the backstepping control against 

the variation of the electrical parameters and the variation of the load force which applied directly to 

the motor. The backstepping controller is often designed using a recursive method. At first, the 

authors determine a pseudo-control input for a subsystem with a lower dimension. The next higher-

dimensional subsystem appropriate state variable, which is viewed as a fictional control, is controlled 

to complete the control attempt. Iteratively, the design process continues until the real control input 

is acquired. For each subsystem, the Lyapunov function is proposed to ensure the stability of the 

subsystem.  

To achieve our objective, this paper is organized as follows: the mathematical model of PMLSM 

is given in Section 2. The proposed controller and its stability analysis are presented in Section 3. 

Validation of the proposed controller with PMLSM and discussion of the results are manifested in 

Section 4, simulation result and discussin in Section 5. General conclusion is presented in Section 6. 

2. Mathematic Model of PMLSM 

Fig. 1 displays the block diagram of the backstepping position control system for the 

investigated machine.  In addition, the machine parameters are listed in Table 1. The mathematical 

model of a PMLSM can be described by the following differential equations [34], [40], [41]: 

 𝑑𝑖𝑑

𝑑𝑡
= −

𝑅𝑠

𝐿𝑑
𝑖𝑑 +

𝐿𝑞
𝜋

𝐿𝑑
𝜏 𝑣𝑖𝑞 +

1

𝐿𝑑
𝑢𝑑 (1) 

 𝑑𝑖𝑞

𝑑𝑡
= −

𝑅𝑠

𝐿𝑞
𝑖𝑞 −

𝐿𝑑
𝜋

𝐿𝑞
𝜏 𝑣𝑖𝑑 −

𝜓𝜋

𝐿𝑞𝜏
𝑢𝑞

 

(2) 

Where 𝑖𝑑 and 𝑖𝑞 are the d-axis and q-axis currents, 𝐿𝑑  and 𝐿𝑞 are the d-an d q-axis inductances, 𝑢𝑑 

and 𝑢𝑞 are the d-axis and q-axis stator voltages, 𝑅𝑠 is the stator resistance, 𝜑 is the pole pitch, 𝑣 is 

the speed, and 𝜓, is the maximum flux linkage due to permanent magnet in each phase. The electro-

mechanical equation of the PMLSM is: 

 
𝐹𝑒 =

3𝜋

2𝜏𝑀
𝑖𝑞(𝜓 + (𝐿𝑑 − 𝐿𝑞)𝑖𝑑) (3) 

In this paper, the, 𝐿𝑑 = 𝐿𝑞 = 𝐿   

Then, the mathematical model of PMLSM can be simplified as: 

 𝑑𝑖𝑑

𝑑𝑡
= −

𝑅𝑠

𝐿
𝑖𝑑 +

𝜋

𝜏
𝑣𝑖𝑞 +

1

𝐿
𝑢𝑑

 

(4) 

 𝑑𝑖𝑞

𝑑𝑡
= −

𝑅𝑠

𝐿
𝑖𝑞 −

𝜋

𝜏
𝑣𝑖𝑑 −

𝜓𝜋

𝐿𝜏
𝑣 +

1

𝐿
𝑢𝑞

 

(5) 

 𝑑𝑣

𝑑𝑡
=

3𝜋

2𝜏𝑀
𝜓𝑖𝑞 −

𝐹𝐿

𝑀
−

𝐵𝑚

𝑀
 𝑣 (6) 
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Fig. 1. Block diagram of the backstepping position control system 

Table 1. PMLSM system parameters 

Primary winding resistance 1.32Ω 

Direct-axis primary inductance 11mH 

Quadrature-axis primary inductance 11mH 

Permanent magnet flux 0.65Wb 

Mass of the primary part 20kg 

Polar pitch 30mm 

3. The Proposed Backstepping Controller Design 

This method is applied to systems having a triangular form, as indicated by the following state 

representation [42]-[44], [23]: 

 𝑥̇1 = 𝜙1
𝑇(𝑥1) ⋅ 𝜗 + 𝜓1(𝑥1) ⋅ 𝑥2 (7) 

 𝑥̇2 = 𝜙2
𝑇(𝑥1, 𝑥2) ⋅ 𝜗 + 𝜓2(𝑥1, 𝑥2) ⋅ 𝑥3 (8) 

 𝑥̇3 = 𝜙3
𝑇(𝑥1, 𝑥2, 𝑥3) ⋅ 𝜗 + 𝜓3(𝑥1, 𝑥2, 𝑥3) ⋅ 𝑢 (9) 

We wish to track the reference signals 𝒚𝒓 at the output 𝑦 = 𝑥1where 𝑦𝑟, 𝑦̇𝑟, 𝑦̈𝑟 and 𝑦𝑟
(3)

 are 

considered to be known and uniformly constrained. The system is third-order, and the controller's 

synthesis is done in three steps. 

3.1. First Step 

In the first step, the error is defined as: 

 𝜀1 = 𝑥1 − 𝛼0 (10) 

The dynamic error is defined as follows:  

 𝜀1̇ = 𝜙1
𝑇 ⋅ 𝜗 + 𝜓1 ⋅ 𝑥2 − 𝛼̇0 (11) 

The proposed Lyapunov function is defined as follows: 
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𝑉1(𝜀1) =

1

2
𝜀1

2 (12) 

Its derivative is given by: 

 𝑉̇1 = 𝜀1𝜀1̇ (13) 

From equation (11) we obtain: 

 𝑉̇1 = 𝜀1[𝜙1
𝑇 ⋅ 𝜗 + 𝜓1 ⋅ 𝑥2 − 𝛼̇0] (14) 

A judicious choice of 𝑥2and which makes 𝑉̇1 negative and ensures the stability of the origin of the 

subsystem described by equation (11). Let us take as the value of 𝑥2, the function 𝛼1, such that:  

 𝜓1 ⋅ 𝛼1 + 𝜙1
𝑇 ⋅ 𝜗 − 𝛼̇0 = −𝑘1 ⋅ 𝜀1 (15) 

Where 𝑘1 > 0 is a design parameter, the virtual control is defined as follows: 

 
𝛼1 =

1

𝜓1

[−𝑘1 ⋅ 𝜀1 − 𝜙1
𝑇 ⋅ 𝜗 + 𝛼̇0] (16) 

Where the substitution of equation 16 into 14 we obtain: 

 𝑉̇1 = −𝑘1 ⋅ 𝜀1
2 ≤ 0 (17) 

From the equation (17) we can say that the subsystem is asymptotically stable
 

3.2. Second Step 

In this step, the virtual command from the previous step is chosen as a reference value. 

The error is defined as follows: 

 𝜀2 = 𝑥2 − 𝛼1 (18) 

The equations of the system to be controlled, in space (𝜀1, 𝜀2), are written: 

 𝜀1̇ = 𝜙1
𝑇𝜗 − 𝛼̇0 + 𝜓1(𝜀2 + 𝛼1) (19) 

 𝜀2̇ = 𝜙2
𝑇𝜗 − 𝛼̇1 + 𝜓2𝑥3 (20) 

The proposed Lyapunov function is defined as follows: 

 
𝑉2(𝜀1, 𝜀2) = 𝑉1 +

1

2
𝜀2

2 (21) 

Its derivative is given by: 

 𝑉̇2(𝜀1, 𝜀2) = 𝑉̇1 + 𝜀1𝜀2̇ (22) 

 𝑉̇2(𝜀1, 𝜀2) = −𝑘1𝜀1
2 + 𝜀2[𝜙2

𝑇𝜗 + 𝜓1𝜀1 + 𝜓2𝑥3 − 𝛼̇1] (23) 

The virtual command which ensures the stability of the subsystem is defined as follows: 

 
𝛼2 =

1

𝜓2

[𝛼̇1 − 𝜓1𝜀1 − 𝜙2
𝑇𝜗 − 𝑘2𝜀2] (24) 

The substitution of equation (24) into (23) we obtain: 
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 𝑉̇2 = −𝑘1𝜀1
2 − 𝑘2𝜀2

2 ≤ 0 (25) 

From equation (17) we can say that the subsystem is asymptotically stable. 

3.3. Third Step 

The equations of the system, in the space (𝜀1, 𝜀2, 𝜀3) given by: 

 𝜀1̇ = 𝜙1
𝑇𝜗 − 𝛼̇0 + 𝜓1(𝜀2 + 𝛼1) (26) 

 𝜀2̇ = 𝜙2
𝑇𝜗 − 𝛼̇1 + 𝜓2(𝜀3 + 𝛼2) (27) 

 𝜀3̇ = 𝜙3
𝑇𝜗 − 𝛼̇2 + 𝜓3𝑢 (28) 

In this step, the error is defined as follows: 

 𝜀3 = 𝑥3 − 𝛼2 (29) 

The dynamic error is defined as follows: 

 𝜀3̇ = 𝜙3
𝑇(𝑥1, 𝑥2, 𝑥3) ⋅ 𝜗 + 𝜓3(𝑥1, 𝑥2, 𝑥3) ⋅ 𝑢 − 𝛼̇2 (30) 

In this step the proposed Lyapunov function is defined as follows: 

 
𝑉3(𝜀1, 𝜀2, 𝜀3) = 𝑉2 +

1

2
𝜀3

2 (31) 

Its derivative is given by: 

 𝑉̇3(𝜀1, 𝜀2, 𝜀3) = 𝑉̇2 + 𝜀3𝜀3̇ (32) 

From the equations (30), (31) and (32) the equation 𝑉̇3(𝜀1, 𝜀2, 𝜀3) is given as follows: 

 𝑉̇3(𝜀1, 𝜀2, 𝜀3) = −𝑘1𝜀1
2 − 𝑘2𝜀2

2 + 𝜀3[𝜓3𝑢 + 𝜓2𝜀2 + 𝜙3
𝑇𝜗 − 𝛼̇2] (33) 

The control law to ensure the stability of the third subsystem and the global system is given by: 

 
𝑢 =

1

𝜓3

[𝛼̇2 − 𝜓2𝜀2 − 𝜙3
𝑇𝜗 − 𝑘3𝜀3] (34) 

Where 𝑘1, 𝑘2and 𝑘3they are positive constants. 

The substitution of equation (34) in (33) we obtain: 

 𝑉̇3 = −𝑘1𝜀1
2 − 𝑘2𝜀2

2 − 𝑘3𝜀3
2 ≤ 0 (35) 

4. Design of the Backstepping Adaptive Controller 

The structure of the recursive backstepping controller proposed for the position control of 

PMLSM is a cascade control, that divides the position control loop into three steps. In the first step 

we controlled the position, we chose the movement speed as a virtual variable to ensure the stability 

of the sub-     m     h                       ’   h         h    x           h                            

to be controlled. In the second step, we chose the dq currents as a virtual control to ensure the stability 

of the sub-system or the error speed and they chose in the next step or the third step as a quantity to 

be controlled. In the third step to ensure the stability of the sub-system or the current errors, we chose 

the voltages as a virtual control. For each step, we proposed a Lyapunov function to ensure the 

stability of each sub-system and a global function in the last step to ensure the overall stability of the 

system. The dynamic equation is simplified as: 
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 𝑑𝑣

𝑑𝑡
= 𝐴𝑖𝑞 −

𝐹𝐿

𝑀
−

𝐵𝑚

𝑀
𝑣 

𝐴 =
3𝜋

2𝜏𝑀
𝜓 

(36) 

4.1. Step 1 

For PMLSM position control, the control objectives are mainly location tracking. In this step 

the position tracking error is as follows: 

 𝑒1 = 𝑥∗ − 𝑥 (37) 

Where end is the position of reference and the position actual. The dynamics of this error  is: 

 𝑒̇1 = 𝑥̇∗ − 𝑣
 

(38) 

The first positive Lyapunov function can be defined as follows: 

 𝑉1 =
1

2
𝑒21  (39) 

The time derivative of 𝑉1 is given, after some mathematical manipulation, in the following 

 𝑉̇1 = 𝑒1𝑒̇1 = 𝑒1(𝑥̇∗ − 𝑣) (40) 

𝑣∗ = 𝑥̇∗ + 𝑘1𝑒1 With 𝑘1 > 0 

4.2. Step 2 

Now we define the speed tracking error as 

 𝑒2 = 𝑣∗ − 𝑣 = 𝑥∗ + 𝑘1𝑒1 − 𝑣
 

(41) 

From equation (12) we have defined the dynamic error of position as: 

 𝑒̇1 = −𝑘1𝑒1 + 𝑒2 
(42) 

Take the derivation of the velocity tracking error  and express the result as 

 
𝑒̇2 = 𝑥̈∗ + 𝑘1(−𝑘1𝑒1 + 𝑒2) − 𝐴𝑖𝑞𝑠 +

𝐹𝐿

𝑀
−

𝐵𝑚

𝑀
𝑣

 

(43) 

Now define q new Lyapunov function as 

 
𝑉2 =

1

2
𝑒1

2 +
1

2
𝑒2

2 (44) 

Differentiate to get 

 

𝑉̇2 = 𝑒1𝑒̇1 + 𝑒2𝑒̇2 𝑉̇2 = −𝑘1𝑒1
2 − 𝑘2𝑒2

2 + 𝑒2  [

𝑒1(1 − 𝑘1
2) + 𝑘1𝑒2 + 𝑥̈∗ − 𝐴𝑖𝑞𝑠

+
𝐹𝐿

𝑀
+

𝐵𝑚

𝑀
𝑣 + 𝑘2𝑒2

]

 

(45) 

With 𝑘2 > 0 

Since 𝑖𝑑𝑠 and 𝑖𝑞 were identified as the virtual control variable we define reference current as: 

*x x
1e

2e
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{

𝑖𝑑𝑠 = 0  

𝑖𝑞𝑠 =
1

𝐴
[(1 − 𝑘1

2)𝑒1 + (𝑘1 + 𝑘2)𝑒2 + 𝑥 +
𝐹𝐿

𝑀
+

𝐵𝑚

𝑀
𝑣]

}

 

((46) 

The parameters that must be estimated here are the inductance 𝐿 which varies with magnetic 

saturation, stator resistance 𝑅𝑠 which varies with temperature, and load torque 𝐹̂𝐿 
which sometimes 

cannot be measured directly. The corresponding error variables are given by 𝐿̂ = 𝐿 + 𝐿̃, 𝑅̂𝑠 = 𝑅𝑠 +
𝑅̃𝑠, 𝐹̂𝐿 = 𝐹𝐿 + 𝐹̃𝐿. 

4.3. Step 3 

The object now is to make and follow the reference trajectory end of the final current error signal 

is defined as: 

 𝑒3 = 𝑖𝑞𝑠
∗ − 𝑖𝑞𝑠 

(47) 

 𝑒4 = 𝑖𝑑𝑠
∗ − 𝑖𝑑𝑠 

(48) 

Using equations (47) and (48) the speed error dynamics can be represented by 

 
𝑒̇2 = 𝐴𝑒3 − 𝑒1 − 𝑘2𝑒2 −

𝐹̃𝐿

𝑀 

(49) 

Now we defined the current error dynamics as 

 𝑒̇3 = 𝑖̇𝑞̇𝑠
∗ − 𝑖̇𝑞̇𝑠  

𝑒̇4 = 𝑖̇̇𝑑𝑠
∗ − 𝑖̇𝑑̇𝑠 

(50) 

 
𝑒̇4 = −𝜙 −

𝑈𝑑

𝐿𝑑
 𝑒̇3 =

1

𝐴
[(1 − 𝑘1

2)(𝑒2 − 𝑘1𝑒1) + (𝑘1 + 𝑘2)   
 

 

(𝐴𝑒3
− 𝑒1 − 𝑘2𝑒2 −

𝐹̃𝐿

𝑀
+ 𝑥∗ −

𝐹̇̂𝐿

𝑀
−

𝐵̂𝑚

𝑀
𝑣̇] − 𝜙1 −

𝑈𝑞

𝐿
 

(51) 

 
𝑒̇4 = −𝜙2 −

𝑈𝑑

𝐿𝑑
 (52) 

Where 

 
𝜙1 = −

𝑅𝑠

𝐿
𝑖𝑞 −

𝜋

𝜏
𝑣𝑖𝑑 −

𝜓𝜋

𝐿𝜏
𝑣

 

(53) 

 
𝜙2 = −

𝑅𝑠

𝐿
𝑖𝑑 −

𝜋

𝜏
𝑣𝑖𝑞 (54) 

The last positive definite Lyapunov function can be to ensure the stability of the control system 

and to determine the parameter adaptation laws. 

 
𝑉3 =

1

2
(𝑒1

2 + 𝑒2
2 + 𝐿𝑒3

2 + 𝐿𝑒4
2 +

1

𝑛1
𝐹̃𝐿

2 +
1

𝑛2
𝑅̃𝑠

2 +
1

𝑛3
𝐿̃2

 

(55) 

Where 𝑛1, 𝑛2 and 𝑛3 are the positive finite adaptation gains. The derivative is expressed as: 
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𝑉̇3 = 𝑒1𝑒̇1 + 𝑒2𝑒̇2 + 𝐿𝑒3𝑒̇3 + 𝐿𝑒4

𝑒̇4 +
1

𝑛1
𝐹̃𝐿 𝐹̇̃𝐿 +

1

 𝑛2
 𝑅̃𝑠𝑅̇̃𝑠 +

1

𝑛3
𝐿̃𝐿̇̃

 

(56) 

The time derivative of the desired q end d axis current in the third Lyapunov function of (56) is 

expressed under the assumption (4), (5) as the following: 

𝑉̇3 = 𝑒1(−𝑘1𝑒1 + 𝑒2) + (𝐴𝑒3 − 𝑒1 − 𝑘2𝑒2 −
𝐹̃𝐿

𝑀
) 

+𝑒3 [𝐿/𝐴 [(1 − 𝐾1
2)(𝑒2 − 𝑘1𝑒1) + (𝑘1 + 𝑘2) (𝐴𝑒3 − 𝑒1 − 𝑘2𝑒2 −

𝐹̃𝐿

𝑀
) + 𝑥∗ +

𝐹̇̂𝐿

𝑀
+

𝐵𝑚

𝑀
𝑣̇] + 𝑅𝑠𝑖𝑞

+
𝐿𝜋

𝜏
𝑣𝑖𝑑 +

𝜓𝜋

𝜏
𝑣−𝑈𝑞] + 𝑒4[𝑅𝑠𝑖𝑑 − 𝑖𝑑 − 𝐿

𝜋

𝜏
𝑣𝑖𝑞 − 𝑈𝑑] 

(57) 

To ensure the stability of the system controlled and estimate the stator resistance, inductance, 

and load force the function 𝑉̇3 it gives as follows:  

 
𝑉̇3 = −𝑘1𝑒21 − 𝑘2𝑒22 − 𝑘3𝑒23 − 𝑘4𝑒24 + 𝑒2 (−

𝐹̃𝐿

𝑀
) 

+𝑒3 [𝑘3𝑒3 + (𝐿̂ − 𝐿̃)/𝐴 [(1 − 𝐾1
2)(𝑒2 − 𝑘1𝑒1) + (𝑘1 + 𝑘2) (𝐴𝑒3 − 𝑒1 − 𝑘2𝑒2 −

𝐹̃𝐿

𝑀
) + 𝑥∗ +

𝐹̇̂𝐿

𝑀
+

𝐵𝑚

𝑀
𝑣̇] + 𝐴𝑒2

+ (𝑅̂𝑠 − 𝑅̃𝑠)𝑖𝑞 +
(𝐿̂ − 𝐿̃)𝜋

𝜏
𝑣𝑖𝑑 +

𝜓𝜋

𝜏
𝑣−𝑞] + 𝑒4[𝑘4𝑒4 + (𝑅̂𝑠 − 𝑅̃𝑠)𝑖𝑑 − (𝐿̂ − 𝐿̃)

𝜋

𝜏
𝑣𝑖𝑞 − 𝑈𝑑]

 

(58) 

The d-q axis reference voltages are chosen to be: 

 
𝑈𝑞 = 𝑘𝑒𝑒3𝐿̂/𝐴 [(1 − 𝑘1

2) + (𝑘1 + 𝑘2)(𝐴𝑒3 − 𝑒1 − 𝑘2𝑒2) + 𝑥∗ +
𝐹̇̂𝐿

𝑀
+

𝐵𝑚

𝑀
𝑣̇] 

𝐴𝑒2 + 𝑅̂𝑠𝑖𝑞 +
𝐿𝜋

𝜏
𝑣𝑖𝑑 +

𝜓𝜋

𝜋
𝑣 

(59) 

 𝑈𝑑 = 𝑘4𝑒4 + 𝑅̂𝑠𝑖𝑑 − 𝐿
𝜋

𝜏
𝑣𝑖𝑞 

 

(60) 

The updated laws are defined as: 

 
𝐹̇̃𝐿 = 𝑛1(

𝑒2

𝑀
+

𝐿

𝐴𝑀
(𝑘1 + 𝑘2)𝑒3)

 

(61) 

 𝑅̇̃𝑠 = 𝑛2(𝑒3𝑖𝑞 + 𝑖𝑑𝑒4)
 

(62) 

 𝐿̇̃ = 𝑛3(
𝑒4𝜋

𝜏
𝑣𝑖𝑞 −

𝑒3𝜋

𝜏
𝑣𝑖𝑑 − (

𝑒3

𝐴
) 

[(1 − 𝑘1
2)(𝑒2 − 𝑘1𝑒1) + (𝑘1 − 𝑘2)(𝐴𝑒3 − 𝑒1 − 𝑘2𝑒2) + 𝑥∗ +

𝐹̇̂𝐿

𝑀
+

𝐵𝑚

𝑀
𝑣̇])

 

(63) 

5. Simulation Results and Discussion 

5.1. Case 1 

For triangular reference and 10 s simulation time, the performances of the controller are 

examined in detail under the load force disturbance variation for the whole operating range. The load 

force applied to PMLSM is 100 Nm.  
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The dynamic position tracking responses of the control systems corresponding to the reference 

triangular conditions are given in Fig. 2 a–h. The reference position trajectory and actual position are 

in Fig. 2 a this figure demonstrates that the asymptotic position objective is achieved with high 

accuracy, the speed, d-q axis stator currents, and electromagnetic force are shown in Fig. 2 (b, c, d, 

and e) respectively, from this figures it is observed that the q-axis stator current is directly 

proportional to the electromagnetic force, and d-axis stator current should be zero, and that the speed 

necessary for a distance of 0.1m is 0.5m / s, Fig. 2 (f, g, and h) plots the parameter estimations, load 

force applied, stator resistance, and stator inductance with the actual values of them. As can be 

observed, all parameter estimates converge to their true values. 

5.2. Case 2 

Starting with no load with the application of a load disturbance at time 3s and no load in 5s, with 

a triangular reference position and the disturbance parameters at time 7s for the resistance 1.32 Ω to 

2 Ω and the inductance at time 9s 11𝑒 − 3𝐻 to 15𝑒 − 3𝐻.  

 
Fig. 2. Simulated results for the condition of case 1 

Table 2. Comparison of the proposed adaptative backstepping controller method with previously published 

controllers 

Ref, Controller type 
Adaptative 

parameters 
Performance 

Transient 

response 
Complexity 

[45] PID × Poor Low Low 

[41], [46] Fuzzy PID × Good High Low 

[8], [47] SMC × Good High Low 

[8] Backstepping × Good High Low 

[48] Feedback linearization × Good High low 

[49], [50] Adaptive terminal SMC  Very good High High 
[13] Adaptive backstepping  Good High High 

[34] Dynamic surface backstepping SM × High High Low 

[51] Adaptive NN nonsingular fast terminal SMC  Very high High High 

Proposed adaptative backstepping controller  High High Low 

 

Fig. 3 (a) plots the reference trajectory and actual         ;   ’            h    h                  

follows the reference with good accuracy. In Fig. 3 b, plotting the motor speed, it is observed that the 

speed necessary for a distance of 0.1 m is 0.5 m/s. The stator current components and the 

electromagnetic force are shown in Fig. 3 (c, d, and e) it is shown that the q-axis stator current is 

directly proportional to the electromagnetic force, and the d-axis stator current should be zero. All 

the parameter estimations are given in Fig. 3 (f, g, and h), which reflect that all the parameter 

estimations converge to their true values. 
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Through the comparison completed in Table 2, it can be said that all intelligent and advanced 

control methods are good, but the difference remains in the method of design of the controller, and 

the advantage of the proposed control remains in the number of parameters that have been estimated 

in the system that depends on controlling the position of the motor. 

 

 
Fig. 3. Simulated results for the condition of case 2 

6. Conclusions 

In this paper, a nonlinear adaptive controller has been proposed for tracking the position of a 

PMLSM which operates in various conditions. The nonlinear controller has been designed based on 

adaptive backstepping recursive position controls the overall stability of this system according to the 

Lyaponuv theory, the problem of parameter insertion and disturbing load is solved according to the 

adaptive law. From the simulation results, it was found that the proposed controller is robust and 

could be a potential candidate for use in high-performance industrial drive applications. 
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