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1. Introduction 

It is widely known that unmanned aerial vehicles (UAV) provide many useful applications in 

various fields such as aerial delivery [1], aerial photography [2], military [3], weather forecasting [4] 

and more examples to date. Although drones have been publicly commercialized and utilized, the 

research and development on control of drones is still in progress to further improve the controller. 

Quadcopter, in specific, has the benefits of better stabilizing mechanism, less complex and cost-

effective, if compared to other multi-rotor drones. However, a quadcopter model alone has challenges 

to fly properly in the air. Its non-linear characteristics [5] and coupled dynamics [6] make a quadcopter 

as an underactuated system to be vulnerable towards perturbations without a controller to correct the 
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 Unmanned Aerial Vehicle (UAV), specifically a quadcopter is publicly 

popular which it provides services in different applications such as aerial 

delivery, aerial photography, military, weather forecasting and more 

examples to date. A Proportional-Integral-Derivative (PID) controller is 

one of the control techniques that can provide stabilization and reliable 

trajectory tracking. However, proper PID gains are needed to ensure a 

stable flight and it should be hybridized or improved to increase the 

robustness, reliability, and stabilization during flight. In this paper, an 

intelligent PID controller using neural network is proposed based on 

Levenberg-Marquardt feedforward neural network training method. The 

PID gains are initialized using different ranges according to the optimal 

gains generated by Particle Swarm Optimization, and this contributes 

towards a good training performance using Mean Square Error (MSE) 

evaluation. The trained network takes desired output and references as 

input data to calculate the required combination of PID gains as the output. 

The including of the response characteristics as the input data for the 

network, together with reference, error, and control input is the significance 

of the work. The performance of this work is presented using MSE 

performances, attitudes and altitude stabilization, and trajectory tracking 

reliability through error index performances. The simulation results 

graphically prove that the proposed controller provides better stability with 

reduced overshoot and settling times. Disturbance rejection is also 

enhanced by 1.7% compared to manual tuned PID controller. The 

reliability of the proposed controller highlights avenues for further 

exploration in AI-driven control strategies for quadcopter systems. 
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state error [7]. With the right controller in the closed-loop system, a quadcopter can have six degrees 

of freedom with only four rotors. There are several control techniques established in the last few years 

involving linear, non-linear and learning-based controllers [8] but the Proportional-Integral-

Derivative (PID) stands out the most as the simplest controller model. 

PID controller is the most common controller in any system with the advantage of its flexibility 

and straightforward design. It is possible to control a firefighter robot using PID controller [9]. The 

work [10] uses PID control algorithm in MATLAB/Simulink to control the motor speed effectively 

in terms of application and operational. Both PID controller and overhead electrical resistance are 

evaluated to control the temperature in a pig nursery and PID controller performs better in the 

resistance heating system providing comfort conditions during the coldest hours [11]. Another 

example to show the usefulness of PID controller is the controller application in an automatic solar-

powered lawnmower [12] by using a two-degree of freedom PID controllers. For a quadcopter system 

instead, the work [13]-[16] used a cascaded PID controller design to handle the underactuated quality 

of the system. Both simulation and experimental results are satisfying. Both work [17], [18] modifies 

the classic PID equation into a nonlinear equation by adding some nonlinear functions and better input 

tracking results of quadcopter are obtained. By using Parrot Mambo quadcopter model, the work [19] 

proves the efficiency of classical PID controller to control quadcopter flight during both simulation 

and experiment under small perturbations. These studies highlight the variety of applications and 

significance of these controller types. 

The determination of the PID gains is the key for designing a PID controller. Although the work 

[20] has proved that the steady state error in the modelling process is an issue that the PID controller 

can handle well, an appropriate tuning of PID gains is essential for fast dynamic response and high 

controllability [21]. The typical tuning method of Ziegler Nichol’s is less efficient on quadcopter 

system which improvement is needed as in work [22]. An alternative method to tune PID gains for a 

quadcopter is by using metaheuristic algorithms such as Particle Swarm Optimization (PSO) [23]-[26] 

and Genetic Algorithm (GA) [27]-[29]. Both algorithms iteratively search for optimal gains depending 

on the best objective function. Review and analysis of different other algorithms on engineering 

applications were made in [30], [21]. 

While metaheuristic algorithms provide an efficient search for optimal solutions, they lack the 

ability to deal with highly nonlinear and multimodal objective functions. Neural networks, on the 

other hand, have the ability to process the complex relationships between system dynamics and PID 

gains. To develop a successful practical application, the PID controller typically needs sort of a priori 

manual retuning, and it is challenging to provide disturbance rejection, low oscillation, and faster 

settling time capabilities for a quadcopter system at the same time. Understanding how to make a 

quadcopter respond effectively to a particular flight style while considering the various flight 

characteristics is a crucial thing. This objective can be achieved by using neural network to auto-tune 

PID gains for quadcopter which satisfying results are proven from previous literatures [31]-[33].  

This work aims to develop an auto-tuned PID controller using feedforward neural network 

(FFNN) to produce a better trajectory tracking performance of quadcopter when compared to 

manually tuned PID controller. PID has simple structure that can easily be adapted with other 

controllers or optimization techniques. By referring to the work [34], this work specifically address 

the method of generating an offline dataset that includes the combinations of quadcopter dynamic 

responses with respective PID gains, for neural network training to produce a more adaptive PID gains 

for quadcopter, in an offline manner. In this work, a dataset of five hundred combinations is formed. 

By using different initial gain ranges obtained from manual tuned PID gains for each quadcopter’s 

dynamic states (𝜙, 𝜃, 𝛾, 𝑧), it helps to narrow down the choices of each gain. Different parameters 

require a specifically appropriate tuned PID gains, and they produce different results. This idea 

produces better quadcopter performances if compared to using the same ranges. Moreover, the 

network training is using inputs including response characteristics, setpoints, states error and control 

inputs of quadcopter, with PID gains as the calculated outputs. MATLAB/Simulink software is used 

as the simulation environment to build the quadcopter model and run the whole proposed control 
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system while comparing the results with the manual tuned PID controller performance. This work 

contributes to the following aspects: 

1. It is difficult to analyze the whole PID manual tuning process to obtain good gains. Neural 

networks can help to analyze the dataset that contains different dynamic responses which 

correspond to different sets of PID gains. 

2. Investigate the reliability of the proposed method by observing improved performance over 

manual tuned PID. It was found that this method helps for performance improvement. 

3. This work is partly ideated from [34]. The research key innovation is the dataset formed using 

gains from manual tuning process and the different cases of network that determine the 

performance of quadcopter control. 

This paper is structured into four major parts where it started with Section 1 that explains in detail 

the state-of-the-art, a brief of this work and its findings. Section 2 introduces the quadcopter details 

on both the physical dynamics and modelling where the formulation is based on Newton-Euler. It also 

includes the controller design methodology that is based on PID controller and neural network training 

with offline dataset generation with the selection of the best network. The results of the network 

testing, altitude and attitudes stabilization and position tracking are all included in Section 3 and 

Section 4 concludes this work by relating the objectives, results, findings, and recommendations for 

future work to provide a clear summary of this work. While this work focuses on quadcopter flight 

analysis using neural network to produce optimal PID gains, future research directions will focus on 

using neural networks for real-time experiment to further advance our understanding of underlying 

reasons for specific parameter adjustments. 

2. Research Methodology 

2.1. Quadcopter Modelling 

According to Fig. 1, there are two different quadcopter configurations: the “cross” configuration 

and the “plus” configuration. Most studies employ a “plus” configuration, which ignores the 

quadcopter's nonlinear effect and significantly increased agility [23]. However, because it uses two 

rotors to act during any movement, a “cross” design is thought to be more stable [35]. 

  

(a) (b) 

Fig. 1.  (a) 'Cross' (b) 'Plus' 

For instance, in a “cross” layout, the speed of rotors 1 and 2 (3 and 4) will increase (decrease) 

simultaneously during pitch movement. However, only rotor 1 (rotor 3) speed will decrease (increase) 

in the “plus” configuration. Since quadcopter’s motions are in effect with the Newton’s Third Law 

concept where, for every action, there is an equal and opposite reaction, the movements that a 

quadcopter can make by varying the speeds of each rotor are depicted in Fig. 2 and Fig. 3 [36]. 

The quadcopter may be lifted vertically to a specific altitude and can hover in the air due to the 

four identically speeded rotors as shown in Fig. 2 (a) and Fig. 3 (a). Fig. 2 (b) demonstrates that as 

rotors 2 and 3 slow down, rotors 1 and 4 rise in speed. This causes the quadcopter to roll along the x-

axis and travel on the y-axis. To shift the quadcopter's position along the x-axis, pitching along the y-
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axis is required where the speed of rotors 1 and 2 must rise while rotors 3 and 4 must decrease, (and 

the otherwise) as shown in Fig. 2 (c). Two diagonal rotors with the same direction of rotation increase 

(decrease) in speed, which allows the quadcopter to vary its heading in the air (yaw) while rotating 

along the z-axis, as seen in Fig. 2 (d) and Fig. 3 (d) [37]. 

    
(a) (b) (c) (d) 

Fig. 2. (a) Hover (b) Roll (c) Pitch (d) Yaw 

    
(a) (b) (c) (d) 

Fig. 3. (a) Hover (b) Roll (c) Pitch (d) Yaw 

From Fig. 2 and Fig. 3, it can be seen that a quadcopter has a translational (𝑥, 𝑦, 𝑧) and rotational 

(𝜙, 𝜃, 𝛾) coordinate subsystems. By using the Newton-Euler approach to derive a quadcopter dynamic 

model, the translational dynamic equation of quadcopter can be deduced as follows [36]: 

 mΓ̈ = uTRez − mgez (1) 

Where g is the gravitational acceleration, m is the mass of the quadcopter, and ez = (0 0 1)T is 

the unit vector, and uT is the sum of the four rotors' thrusts. 

 uT = ∑ Fi

4

i=1
= b ∑ Ωi

2
4

i=1
 (2) 

The thrust force produced by rotor 𝑖, 𝑖 = 1,2,3,4 is Fi = b ∙ Ωi
2, where b is the thrust factor and Ωi 

is the speed of rotor i. The body frame's rotation matrices R is regarded to the earth frames and is given 

by [38]:  

 Rb
e = [

CθCψ SϕSθCψ − SψCϕ SθCϕCψ + SϕSψ
SψCθ SϕSθSψ + CϕCψ SθSψCϕ − SϕCψ
−Sθ SϕCθ CϕCθ

] (3) 

Where C (angle) stands for cosine and S (angle) for sine. The quadcopter is oriented by three 

Euler angles: roll angle (ϕ), pitch angle (θ), and yaw angle (ψ). This quadcopter's rotational dynamic 

equation is also provided by [36]: 

 Iω̇ = −ω × Iω − Jr(ω × ez)(−1)𝑖+1Ωr + [

τϕ

τθ

τψ

] (4) 

In this context, I represents the inertia matrix, ω × Iω and Jr(ω × ez)(−1)i+1Ωr denote the 

gyroscopic effects resulting from rigid body rotation and changes in propeller orientation, 
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respectively. The control torque, τ, is obtained by adjusting the rotor speeds. Based on (1) and (4), 

below is a representation of the generated translational and rotational equation: 

 

ẍ =
1

m
(SθCϕCψ + SϕSψ)U1 

ÿ =
1

m
(SθCψCϕ + SϕSψ)U1 

z̈ =
1

m
(CϕCθ)U1 − g 

ϕ̈ =
1

Ixx
[(Iyy − Izz)θ̇ψ̇ − Jrθ̇Ωr + lU2] 

θ̈ =
1

Iyy
[(Izz − Ixx)ϕ̇ψ̇ + Jrϕ̇Ωr + lU3] 

ψ̈ =
1

Izz
[(Ixx − Iyy)θ̇ϕ̇ + U4] 

(5) 

By referring to [39], the parameters are set accordingly for the quadcopter model in this work as 

tabulated in Table 1. 

Table 1.  Parameters associated with quadcopter model 

Parameters Values 

g 9.81 m. s2 

m 0.5 kg 

ℓ 0.2 m 

Jx = Jy 4.85 × 10−3 kg. m2 

Jz 8.81 × 10−3 kg. m2 

Jr 3.36 × 10−5 kg. m2 

KT 2.92 × 10−6 kg. m 

Kd 1.12 × 10−7  kg. m2 

2.2. Controller’s Structure 

In this section, the controller structure in a quadcopter system is visualized in block models. The 

design and methodology of the auto-tuned PID controller using neural network are also presented in 

this section. Fig. 4 represents the block diagram of overall control structure of quadcopter system 

which includes the quadcopter model and individual controllers for altitude, attitudes, and position. 

From Fig. 4, it can be seen that roll and pitch controllers’ inputs depending on the position controller’s 

output in a complete quadcopter system. 

 

Fig. 4. Block diagram of quadcopter system 
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2.2.1. Altitude Control 

To control an altitude of a quadcopter, the error (difference between desired input and the actual 

output) is taken into a controller for error attenuation, so that the controller will output an adjusted 

control input, U1, for the quadcopter to fly to a desired altitude. Fig. 5 visualizes the general control 

structure for altitude of quadcopter system. Ω𝑟 is a relative speed where in some literatures, it is used 

as an internal disturbance as included in (5). 

 

Fig. 5. Block diagram for altitude control 

2.2.2. Attitude Control 

Attitudes in a quadcopter are the Euler angles associated with a quadcopter movement which are 

so-called, roll (ϕ), pitch (θ) and yaw (ψ) as in Fig. 2 and Fig. 3. To control the three angles, each error 

is taken to produce the respective control inputs, U2, U3 and U4, for the quadcopter to meet the desired 

requirements given. Fig. 6 depicted the structure of attitude control in a quadcopter system. 

 

Fig. 6. Block diagram for attitudes control 

2.2.3. X-Y Position Control 

Due to the underactuated and coupling dynamic characteristics of a quadcopter, the position x 

and y cannot be controlled directly. In some research, x and y positioning are regarded as the 

underactuated part [40] of a quadcopter while the attitudes and altitude are called the fully actuated 

part of a quadcopter. Only through the change of roll and pitch angle movement, the quadcopter can 

achieve a translational movement in x and y axis, and this is the occurrence of coupling dynamic in a 

quadcopter. 

In Fig. 7, the position controller embodied controllers for both x and y translational movement 

of a quadcopter with a conversion block from world frame to body frame. Looking at Fig. 7, the 

position controller is considered the outer loop in the cascaded loop of controllers in a quadcopter. 

The position controller also receives input from the observed yaw angle. The reason is that while roll 

and pitch are relative to the drone's body, the x and y position error is relative to the ground or the 

world reference frame. As a result, pitch doesn't always move the drone in the x-world direction, and 

roll doesn't always move the drone in the y-world direction. Equation (6) is used to build the 

conversion block for each x and y position. 
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Fig. 7. Block diagram for position control 

 
xG cos ψ + yG sin ψ = xB 

xG sin ψ − yG cos ψ = yB 
(6) 

Based on (6), if the quadcopter needs to be moved to a very specific location in the room, it will 

depend on how it is rotated or its yaw angle and it needs to know whether roll or pitch or a mix of the 

two will be necessary to do that. The outputs from (6) are then fed into controllers to produce the 

desired roll and pitch angle as in (7), for the inner loop controllers (the attitudes and altitude 

controllers). 

 

ϕd = Kp(yd
B − yB) + Ki ∫ (yd

B − yB)
t

0

dt + Kd

d(yd
B − yB)

dt
 

θd = Kp(xd
B − xB) + Ki ∫ (xd

B − xB)
t

0

dt + Kd

d(xd
B − xB)

dt
 

(7) 

2.3. PID Controller 

The PID control law involved in this work is presented mathematically in (8). Direct inputs are 

given to the position, altitude and yaw controllers while roll and pitch controllers receive inputs from 

the position controller. A PID controller works by reducing the errors resulting from the difference 

between the input reference and the actual output of the quadcopter states. The proportional term 

creates an instant multiplied output to align the process value with the input reference. The integral 

term accumulates error over simulation time where more effect is needed until the process value 

reaches the setpoint. The derivative term helps to predict the future of the process value by multiplying 

with the ramp rate of the process value to prevent overshooting if the ramp rate is too fast [41].  

 

U1 = KPez + KI ∫ ez

t

0

dt + KD

dez

dt
 

U2 = KPeϕ + KI ∫ eϕ

t

0

dt + KD

deϕ

dt
 

U3 = KPeθ + KI ∫ eθ

t

0

dt + KD

deθ

dt
 

U4 = KPeψ + KI ∫ eψ

t

0

dt + KD

deψ

dt
 

(8) 

From the generation of offline dataset to the network training, simulations are done using 

MATLAB/Simulink software including the building of quadcopter model. Table 2 shows the manual 

tuned PID gains that act as PID initialization for the dataset generation which later to be used for 

neural network training. The gains were obtained by following the PID manual tuning method 

provided by [42]. In general, the performance of a manually tuned PID controller is excellent, 
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particularly for simple flight inputs such as step inputs. However, its performance may degrade when 

faced with more complex trajectory tracking patterns. By leveraging the analysis capabilities of a 

neural network on various combinations of flight outputs and gains, it is possible to obtain a more 

consistent set of PID gains. 

Table 2.  The best gains obtained from PID manual tune to generate a new dataset 

Parameters 𝑲𝒑 𝑲𝒊 𝑲𝒅 

Roll 50 4.1531 3.1645 

Pitch 17.4897 3.9749 3.9290 

Yaw 33.7736 2.4542 0.9508 

Thrust 50 30.3777 8.8697 

 

The dataset is generated by simulating the quadcopter system by using the range of PID gains set 

differently for each of the gains, by referring to the optimized gains as PID controllers’ gains 

initialization. There are seven items that are included as inputs to the ANN, which are the reference, 

control input, PID controller error [32], rise time (Tr), settling time (Ts), overshoot time (To) and 

overshoot period (Op) [34], for each of the parameters in Table 2. 500 lines of PID gains with their 

corresponding seven items are registered in each dataset (𝜙, 𝜃, 𝛾, 𝑧) for ANN training in the next 

section. 

2.4. Neural Network Auto-Tuner PID Controller 

A feedforward neural network is developed and explained in detail in this sub-section. An 

artificial neural network (ANN) is an imitation of functions of human brain cells which involves axons 

and dendrites that perform information transferring and interpreting, using inputs obtained from the 

human’s five senses. In this work, the newly developed neural network needs to be trained first, as 

how a human child being trained to perform certain actions. The datasets generated will be used to 

train the network. Each dataset prepared has seven inputs (ref, u, e, Tr, Ts, To, Op) and 3 targeted 

outputs (Kp, Ki, Kd) for the training. 

 

Fig. 8. Flowchart of network creation 
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Fig. 8 briefly visualizes the process of network creation starting from the use of datasets for 

network training. Fig. 9 shows the network structure, where 𝑥 denotes the 7 inputs into the network 

and ∆𝐾𝑝,𝑖,𝑑 denotes the 3 calculated outputs of the network 𝑖, 𝑗 and 𝑘 denote the neurons of input, 

hidden and output layer respectively. The weight matrices of input layer to hidden layer and from 

hidden layer to output layer are represented by 𝑤𝑖𝑗 and 𝑣𝑗𝑘respectively. Output from each layer is 

denoted by 𝑂𝑖, 𝑂𝑗 and 𝑂𝑘. Equations (9) to (14) below are the mathematical model of feedforward 

ANN [43]. 

 

Fig. 9. The general structure of feedforward ANN 

Input to the hidden layer. 

 𝑂𝑖 = ∑ 𝑤𝑖𝑗𝑥𝑖

16

𝑖=1

 (9) 

Output of hidden layer. 

 𝑂𝑗 =
1

1 + 𝑒−𝑂𝑖
 (10) 

Input to the output layer. 

 𝑟 = ∑ 𝑣𝑗𝑘𝑂𝑗

𝑛

𝑗=1

 (11) 

Output of output layer. 

 ∆𝐾𝐺 =
1

1 + 𝑒−𝑟
 (12) 

Error from training. 

 𝑒 = ∆𝐾𝐺 − 𝑇 (13) 

Mean Square Error to evaluate the training performance. 

 𝑀𝑆𝐸 =
∑ 𝑒2𝑛

𝑖=1

𝑖
 (14) 

∴ T = Target output from dataset. 
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The ANN used in this work is also considered as a supervised learning process because targeted 

outputs are used as goals for the ANN to accomplish through training. The actual output from ANN 

training is compared with the targeted output to get the errors as in (13) and the training performances 

is evaluated using MSE of the cumulative errors and the regression values. Fig. 10 shows the block 

diagram of the whole system. 

 

Fig. 10. Block diagram of PIDNN-quadcopter system 

Different network cases are being tabulated in Table 3 to identify the best network to be used in 

this work. Case 1 to Case 3 represent the regression values obtained from networks with different 

numbers of hidden layers but with same neurons. Case 4 to Case 6 represent the regression values 

obtained from networks with the same number of hidden layers but different neurons. Each dataset 

was randomly divided as follows: 70% of the data for the training set, 15% for a network validation 

set, and 15% for evaluating the network performance (test set). Splitting the dataset into these three 

subsets helps ensure that the model learns effectively, generalizes well to new data, and provides 

reliable performance estimates. The test set is used to assess the final performance of the trained model 

on unseen data and the best network will depend on MSE values from the test set. 

Based on Table 3, it is observed that Case 6 produces the most acceptable result with the lowest 

MSE value of the test set. The trained network from Case 6 is chosen to produce results in the next 

section. As conclusion from this section, the ANN contains three hidden layers and uses 300 epochs. 

The Levenberg-Marquardt training method was selected because of its widespread use in the field of 

artificial neural network (ANN) research. The minimum gradient is set to be 1e-7 and the training 

performance is evaluated using MSE with a target of 1e-6. All these specifications were finalized after 

being adjusted several times according to the network performance. 

Table 3.  ANN training cases 

Cases Hidden Layers 
 MSE Performance Values 

Train (70%) Validation (15%) Test (15%) 

Case 1 [18] 

Z 1.277 2.161 2.378 

Roll 1.288 2.495 2.008 

Pitch 0.4008 0.7267 0.8348 

Yaw 0.934 1.751 1.973 

Average 0.975 1.783 1.798 

 

Case 2 [18 18] 

Z 0.2461 2.956 3.194 

Roll 0.06229 2.803 1.871 

Pitch 0.05212 0.835 1.031 

Yaw 0.3616 2.104 1.754 

Average 0.181 2.175 1.963 
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Cases Hidden Layers 
 MSE Performance Values 

Train (70%) Validation (15%) Test (15%) 

 

Case 3 [18 18 18] 

Z 0.02202 2.683 3.132 

Roll 0.01701 1.919 2.745 

Pitch 0.00595 0.9223 1.105 

Yaw 0.1771 1.8 2.155 

Average 0.056 1.831 2.284 

 

Case 4 [8 4] 

Z 1.512 2.127 2.52 

Roll 1.481 2.424 1.706 

Pitch 0.5703 0.8975 0.8517 

Yaw 1.075 1.773 2.269 

Average 1.160 1.805 1.837 

 

Case 5 [14 8] 

Z 0.8 2.484 3.117 

Roll 0.622 2.321 1.888 

Pitch 0.2112 0.8073 0.7759 

Yaw 0.6495 2.08 1.827 

Average 0.571 1.923 1.902 

 

Case 6 [18 9] 

Z 0.6719 1.991 2.545 

Roll 0.4029 2.181 2.281 

Pitch 0.1676 0.8294 0.8815 

Yaw 0.6683 1.937 1.537 

Average 0.478 1.7346 1.811 

 

3. Results and Discussion 

The MATLAB/Simulink environment was used to execute the simulations. The simulation is 

conducted on a personal computer with 8GB RAM which is ideal to run MATLAB/Simulink software 

for quadcopter system verification, together with the designed controller. MATLAB runs for the 

dataset and the ANN while Simulink simulates the whole quadcopter system including designed 

controllers. The quadcopter model is built and simulated using the equations provided in section 2.1. 

In this section, results are presented through altitude and attitude stabilization using step input 

and multi-level tracking, and position tracking. Perturbations are also added during multi-level altitude 

tracking to assess the reliability of the designed controller compared to manual tuned PID. The chosen 
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trained network from the previous section is used to produce final and most reliable results in this 

section.  

3.1. Altitude and Attitude Stabilization 

Looking at Fig. 11, Fig. 12, Fig. 13, until Fig. 14, the auto-tuned PID controller has greatly 

improved the quadcopter performance compared to the manual tuned PID controller in terms of 

reducing overshoot, rise time and settling time. The proposed controller has demonstrated its 

efficiency in stabilizing the altitude and attitude of a quadcopter, effectively controlling its states under 

the influence of step inputs. 

  

Fig. 11. PIDNN for roll angle tracking Fig. 12. PIDNN for pitch angle tracking 

  

Fig. 13. PIDNN for yaw angle tracking Fig. 14. PIDNN for altitude tracking 

3.2. Altitude and Attitude Multi-Level Tracking 

A linear quadcopter model is also tested using the auto-tuned PID gains where all attitude angles 

are set to zero. In Fig. 15, the result shows lower overshoot with longer settling time compared to the 

manual tuned PID gains. Both controllers successfully track the desired input reference, although 

differing performance characteristics are observed. 

 

Fig. 15. Multi-level simulation of linear-model quadcopter (altitude tracking) 
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Fig. 16. Multi-angle tracking of roll 

 

Fig. 17. Multi-angle tracking of pitch 

 

Fig. 18. Multi-angle tracking of yaw 

Looking at Fig. 16, Fig. 17, Fig. 18, all multi-angle tracking of roll, pitch and yaw using the 

resulting gains from the designed controller can follow the input reference much better than the normal 

PID controller. However, it is difficult for both controllers to follow a sudden change in reference 

such as 1-2 seconds and 6-7 seconds in Fig. 16 and Fig. 17 while a constant reference is easier to track. 

3.3. Position Tracking 

Fig. 19, Fig. 20, Fig. 21 until Fig. 22 depicted the position tracking of quadcopter in circular and 

lemniscate trajectory tracking for 20 seconds of simulation for a complete pattern. As can be seen, 

steady-state error occurs in both simulations, where it requires a longer time to settle following the 

desired path. The new gains provide a better overshoot and smaller steady-state error in position 

tracking as compared to old ones. Table 4, Table 5, Table 6, until Table 7 presents the controllers error 

based on index performances of IAE, ISE, ITAE and ITSE for X-position, Y-position, roll-angle, and 

pitch-angle, respectively. Overall error shows that the new gains (PIDNN) are associated with much 

lower error values if compared to the manual tuned gains. 

Table 4.  The error performance values comparison of trajectory tracking (X-position) 

 PID PIDNN 

X IAE ISE ITAE ITSE IAE ISE ITAE ITSE 
Circular 0.6074 0.01722 18.22 0.5165 0.3468 0.005499 10.4 0.165 

Lemniscate 0.8981 0.03543 26.94 1.063 0.5122 0.01156 15.37 0.3468 
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Fig. 19. PIDNN for circular position tracking 

(2D) 

Fig. 20. PIDNN for circular position tracking 

(3D) 

  

Fig. 21. PIDNN for lemniscate position 

tracking (2D) 

Fig. 22. PIDNN for lemniscate position tracking 

(3D) 

Table 5.  The error performance values comparison of trajectory tracking (Y-position) 

 PID PIDNN 

Y IAE ISE ITAE ITSE IAE ISE ITAE ITSE 
Circular 1.078 0.423 32.34 12.69 0.7949 0.2687 23.85 8.061 

Lemniscate 2.162 0.5207 64.85 15.62 2.155 0.2324 64.66 6.971 

Table 6.  The error performance values comparison of trajectory tracking (roll angle) 

 PID PIDNN 

𝝓 IAE ISE ITAE ITSE IAE ISE ITAE ITSE 

Circular 0.6398 0.1064 19.19 3.191 0.2288 0.02646 6.863 0.7939 

Lemniscate 3.189 0.4324 95.67 12.97 0.9064 0.04183 27.19 1.255 

Table 7.  The error performance values comparison of trajectory tracking (pitch angle) 

 PID PIDNN 

𝜽 IAE ISE ITAE ITSE IAE ISE ITAE ITSE 

Circular 0.4637 0.02515 13.91 0.7546 0.3824 0.01674 11.47 0.5023 

Lemniscate 0.6451 0.03438 19.35 1.032 0.5469 0.02438 16.41 0.7313 

 

3.4. Robustness Evaluation during Presence of Perturbation 

To further evaluate the effectiveness of the designed controller, a wind gust disturbance is added 

into the altitude of the quadcopter model as shown in Fig. 23 (a). The performance of both controllers 
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in facing perturbation is almost the same based on Fig. 24. The auto-tuned gains (PIDNN) can handle 

rising and falling edge better than the manual tuned gains and have better convergence towards the 

setpoint. To further analyze, Root Mean Square Error (RMSE) evaluation is introduced in Table 8. 

Based on the numerical evaluation, the auto-tuned PID controller performs 1.7% better than the 

manual tuned PID controller. The steps taken from generating the datasets to network training have 

produced a more adaptive PID controller gains that can homogenously respond to different response 

characteristics of the quadcopter states in an offline manner. 

  

Fig. 23. Disturbance model Fig. 24. Multistep altitude during perturbation 

Table 8.  The RMSE evaluation during perturbation 

PID PIDNN 

0.4472 0.4396 

 

All the results have shown minor improvements being made by the designed controller if 

compared to the manual tuned one. This work has successfully presented the design and performance 

of the auto-tuned PID controller using neural network in comparison to manual tuned PID controller. 

The concept of generating auto-tuned PID gains using an artificial neural network (ANN), trained 

through analysis of various response characteristics, has been successfully demonstrated in this work. 

To enhance the effectiveness of the network, additional datasets with diverse setpoints should be 

generated. Furthermore, integrating real-time feedback from the quadcopter system could further 

enhance the performance of the designed controller. 

4. Conclusion 

In conclusion, this study has demonstrated the performance of auto-tuned neural network PID 

controller in controlling a quadcopter UAV, with a comparative analysis conducted against a manually 

tuned PID controller. Unlike traditional PID manual tuning, which lacks comprehensive analysis, the 

use of a neural network enables the analysis of an entire dataset containing 500 simulation results with 

varying PID gains, leading to better auto-tuning of the controller. The dataset was formed using an 

initialization of PID gains obtained from manual tuning, and multiple networks with different 

architectures were evaluated using MSE performance. The results revealed that the auto-tuned PID 

gains provided reduced overshoot and very low steady-state error compared to manually tuned PID 

gains, albeit with a sacrifice in settling time. During perturbation, the auto-tuned PID controller 

outperformed the manual tuned PID controller by 1.7%. Notably, improvements were observed 

primarily during lower setpoints, suggesting the need for generating datasets according to various 

setpoints to enhance the adaptability of the neural network. For future research, it is recommended to 

widen the analysis spectrum of the neural network by generating datasets with diverse setpoints. 
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Additionally, applying the ANN-driven PID controller to a real-time feedback quadcopter system 

could enhance the controller's functionality in stabilizing the quadcopter during flight. Overall, this 

study contributes valuable insights into the effectiveness of auto-tuned neural network PID controllers 

and highlights avenues for further exploration in adaptive control strategies for quadcopter systems. 
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