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1. Introduction 

Oil and gas are the crucial resources that power over 50% of the world's energy consumption at 

present [1]. Pipelines transport these two essential commodities from one location to another [2]. Oil 

and gas pipelines predominantly use steel, a material highly susceptible to corrosion [3]. Corrosion 

has a substantial impact on nearly all sectors of the economy and industry, including oil and gas 

pipelines [4]. 
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 Corrosion presents a significant challenge in the oil industry, causing both 

immediate and long-term damage. Effective early prediction and 

monitoring of corrosion are crucial to mitigating economic losses and 

environmental impacts. However, traditional methods for predicting and 

detecting corrosion are often time-consuming and inefficient. This study 

leverages convolutional neural networks (CNNs) within a deep learning 

framework to develop two automated detection models for internal and 

external corrosion. These models can extract hierarchical features directly 

from raw pixel data, enhancing prediction accuracy and efficiency. Our 

dataset, provided by the Iraqi Oil Company, includes drone-captured 

images (162 photos: 91 depicting corrosion and 71 showing no signs of 

corrosion) and ultrasonic sensor readings (250 rows of oil pipeline 

thickness measurements). We assess the performance of our CNN models 

using metrics such as accuracy, precision, recall, and F-score, and we 

perform regression analysis to evaluate prediction errors. This research 

introduces two innovative systems: a 2D CNN for classifying the presence 

or absence of external corrosion, and a 1D CNN for assessing internal 

corrosion levels, identifying areas with the highest corrosion rates, and 

estimating the remaining operational lifespan based on these rates. 

Additionally, we develop a user-friendly interface for these systems. 

Comparative analysis demonstrates the superior efficiency of our proposed 

approach over traditional and alternative methods. Our findings advance 

the understanding of artificial intelligence applications in corrosion 

prediction, offering robust models to prevent unexpected corrosion 

failures. Future work will explore the integration of additional factors, such 

as humidity and temperature sensors, to further enhance the system's 

accuracy and reliability. 
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The corrosion of pipelines used for transferring oil and gas resources poses a significant economic 

danger [5], [6]. Corrosion, in addition to high operating pressures, can greatly diminish the lifespan of 

oil and gas pipelines [7], [8] and compromise their structural integrity [9]. While there are various 

grades of carbon steel available for oil and gas pipelines, such as A, B, or C, as specified by ASTM 

A-53 and A-106 and API Standard 5L [10], the failures of high-strength low-alloy (HSLA) API 5L X 

grades of pipeline steel (X42-X100) are the most frequently documented in the literature [11]-[13]. 

The corrosion that occurs on the outer surface of oil and gas pipelines can cause significant damage 

over time. However, this type of corrosion is generally overlooked compared to interior corrosion, 

which receives the most protection in practice. The combination of corrosion and internal material 

faults can lead to the abrupt and catastrophic failure of pipelines [14]. Controlling corrosion, whether 

it be internal or external, is vital to ensuring the integrity of oil and gas pipelines. 

The exponential expansion of the Iraqi oil and gas sector necessitates the augmentation of 

pipeline infrastructure, leading to heightened levels of operational and managerial intricacy. Ensuring 

the integrity of this infrastructure is crucial due to its possible negative environmental effects and 

substantial financial implications. During the early stages of production, corrosion poses a significant 

risk to the integrity of oil and gas pipelines. The unrefined blend obtained from the geological 

formation, consisting of interconnected water, organic acids, and diverse dissolved gases like carbon 

dioxide (CO2) and hydrogen sulfide (H2S), generates a corrosive atmosphere for steel. Although there 

is a good understanding of corrosion causes and better procedures for detecting corrosion, industry 

studies consistently indicate that both internal and exterior corrosion are major factors contributing to 

pipeline failure. 

It is important to highlight that the average economic damage resulting from pipeline disasters is 

substantial [15]. During the last thirty years, pipeline mishaps in the United States have caused around 

$7 billion in property damage, resulting in the deaths of over 500 individuals and causing injuries to 

thousands. An instance of a pipeline explosion occurred in the community of San Bruno, California, 

USA, on September 6, 2010, resulting in the deaths of eight individuals and causing injuries to over 

fifty more. On July 26, 2010, a pipeline fault in Michigan, USA, resulted in the spillage of about 

840,000 gallons of crude oil into the Kalamazoo River. The catastrophe incurred an estimated cost of 

$800 million [16]. The factors contributing to pipeline degradation are many. Fig. 1 depicts a pie chart 

presenting data on the primary reasons contributing to pipeline failure, including pipeline corrosion, 

human negligence, errors during installation and erection work, manufacturing process problems, and 

external influences [17]. According to these statistics, it is difficult to completely prevent pipeline 

incidents because the causes of failures come from various sources. Monitoring pipeline corrosion is 

crucial for mitigating the environmental impact of oil spills and ensuring the proactive maintenance 

of pipelines. Hence, it is viable to reduce the frequency of losses, accidents, and other substantial 

societal and environmental consequences resulting from oil pipeline failures due to corrosion. 

 

Fig. 1. Chart displaying the statistical data on pipeline failure 
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As for the Iraqi oil industry The Wars and other conflicts caused protracted interruptions in Iraq 

from the 1980s to the 2000s. However, since 2009, international money has developed oil fields in 

southern Iraq, and as of October 2019, Iraq's capacity to produce oil has rebounded to about 3.7 

MMBPD. The Iraqi government wants to see a rise in crude oil production, as this is their primary 

sector. Since the Iraqi economy is entirely dependent on the oil industry, most probably reach 6.0 

million barrels per day by 2024 in order to maintain stable national income and to keep bolstering the 

country's financial resources. The process of exporting oil from Iraq's southern fields—Rumaila, West 

Qurna, Majnoon, Zubair field, and others-to other countries is done by sea. The pipelines that carry 

oil from the well to the field and then to sea ports in Iraq for example (Khor Al-Amaya), Jordan's Red 

Sea ports, and Turkey's ports are the carrier's middle link. The pipeline network spans thousands of 

kilometers throughout Iraq as shown in Fig. 2 [18]. 

 

Fig. 2. Oil and gas pipeline network in Iraq 

The inspection of in-service piping in the oil and gas industry remains a complex procedure, 

requiring precise examination and analysis of numerous elements prior to devising subsequent courses 

of action. Consequently, it is necessary to implement all the introduced concepts, tools, methods, and 

recommended practices. Every stage of the inspection procedure is critical, as the information and 

reports produced at each stage impact the determination of the inspection interval. Nonetheless, as 

evidence of the inspection's execution, a substantial quantity of data and reports will be produced due 

to the inspection's complexity and volume. The inspector may also disregard certain inspections as a 

result of fatigue and tension brought on by the heavy workload throughout the inspection process. 

Consequently, incorrect identification of corrosion and other damage mechanisms present in the 

piping system may occur, potentially resulting in an accident. 

Hence, the objective of this study is to introduce a robust mechanism for extracting corrosion 

characteristics from a given dataset. This dataset comprises images and ultrasonic sensor readings 

used as input to train a convolutional neural network (CNN) specifically for this task. The algorithm 

relies on authentic data obtained from credible sources, such as the Iraqi Oil Company. We built two 

models of convolutional neural networks, one of which (2DCNN) classifies images from the drone 

related to corrosion based on their presence or absence. We calculated the evaluation parameters for 

this network. Next, we designed another network (1DCNN) that utilizes ultrasonic sensor readings for 

regression, predicting corrosion location, estimating the pipeline's useful lifespan, and calculating all 
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error rates. We considered all standards for data classification and collection methods to ensure they 

aligned with the American Petroleum Institute API 570 standards. 

1.1. The Main Contributions of the Paper are Summarized as Follows 

The advancements in Artificial Intelligence (A.I.) for object recognition can be mostly credited 

to the rise of deep learning artificial neural networks. Deep learning, a prominent area of artificial 

intelligence, emulates the cognitive processes of the human brain to analyze data and perform tasks 

such as object detection, speech recognition, and pattern generation for decision making. Deep 

learning has emerged as the logical advancement from "shallow networks" to neural networks with 

multiple layers, capable of progressively transforming representations (such as data and images) from 

simple to complex, by increasing the depth of the layers [19]. The initial stage in maintaining 

structures for corrosion protection is doing a visual check. Currently, humans are primarily responsible 

for gathering qualitative data. Although these inspectors possess certification and experience, the 

effectiveness of this time-consuming approach is subjective and heavily reliant on the expertise and 

qualifications of the individual. 

Due to the advancements observed in the field of artificial intelligence across various domains, 

we present below the most significant contributions made in this research: 

1. Predictive maintenance, which involves early detection of corrosion rates and classification of 

corrosion types according to existing standards in oil companies, reduces the costs associated 

with the failure of oil facilities due to this factor. 

2. Identifying the points of corrosion at high rates reduces inspection operations, as does 

performing preventive treatments quickly and with high accuracy. 

3. non-destructive techniques to assess corrosion and calculate the remaining life of crude oil pipes 

and tanks. These techniques include using images of corrosion from drones in difficult-to-reach 

places and readings from ultrasonic sensors provided by specialized oil companies. 

4. We have developed two neural networks (1DCNN and 2DCNN) for different tasks. One of them 

relies on analyzing incoming images and classifying them to identify the presence and absence 

of corrosion. The other network uses sensor readings for the purpose of determining the location 

of the highest point of corrosion as well as predicting the remaining lifespan of the pipeline or 

oil tank. 

The following sections are organized as follows: 

Section 2: In this section, we provide theoretical background and more information on four main 

topics: external corrosion, internal corrosion, convolutional neural networks (CNN), and the American 

Petroleum Institute (API), as well as the ways to find corrosion in oil transmission line and the most 

important factors to calculate. Section 3: Presents a comprehensive collection of computational 

models and equations that govern the process of detecting corrosion. Section 4: Explain how to find 

and follow pipeline corrosion, including how to collect data, process it in two types of convolutional 

neural networks, and evaluate the system using parameter outputs. Section 5: In order to determine 

whether corrosion was present or not, we display the results of all classification and regression 

operations, as well as the location of the higher rate of corrosion, in accordance with the API standards 

that govern these operations. Additionally, we present the graphical interface model for the operation. 

Section 6: This section encompasses the presentation of all the constraints encountered during the 

project, followed by a comparison with other works. Additionally, it addresses the challenges faced 

during the implementation process and provides specific recommendations for future endeavors. 

2. Theoretical Background 

The problem of corrosion is a common one in oil installations and can be divided into two parts: 

external corrosion and internal corrosion. Based on the data provided by the relevant oil companies, 

we will use two types of convolutional neural networks to solve these two problems. These two types 



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

1017 
Vol. 4, No. 3, 2024, pp. 1013-1036 

  

 

Mustafa R. AL-Khalidi (Corrosion Prediction in the Oil Industry Using Deep Learning Techniques) 

 

will be explained, and all parameters for evaluating the proposed system will be calculated. We relied 

on the American Petroleum Institute API 570 standards related to the corrosion factor. 

This section briefly discusses external corrosion, internal corrosion, we will use convolutional 

neural network models (CNN) and gather evaluation metrics, and the standards of the American 

Petroleum Institute (API). 

2.1. External Corrosion 

A succinct summary There is a scarcity of literature that includes thorough review articles [20]-

[23] and technical studies [24] on the exterior corrosion of both bare and coated oil and gas pipelines. 

In 2009, Noseworthy [25] conducted a study on the external corrosion of pipes that had been coated 

and protected against corrosion using cathodic protection. The study included many real-world 

industrial cases. In 2021, Kim et al. [26] released a review article on the elements that influence the 

exterior corrosion of underground coated steel pipes. Despite the existence of mitigation measures 

such as coating, lining, and cathodic protection [27]-[29], which are suggested standard procedures 

for preventing external corrosion of oil and gas pipelines, there are still regular reports of pipeline 

failures. However, these materials offer limited insights into the mechanisms and timing of external 

corrosion in pipes. External corrosion of oil and gas pipelines is a damaging mechanism that occurs 

over time. The extent of external corrosion is significantly influenced by the age of the pipeline and 

the presence and effectiveness of external protective measures. Typically, it is averted through the use 

of coatings and cathodic protection (CP) systems. In certain areas of Iraq, older natural gas pipelines 

lack proper coating and are either uncoated or just have coal tar or enamel wrap coatings [30]. The 

corrosion of uncoated oil and gas pipelines can begin when the protective oxide coating on their 

external surface is locally damaged, removed, or destabilized by elements in the soil that promote 

corrosion. In addition, mechanical forces such as crevice corrosion and localized corrosion contribute 

to exterior corrosion [31]-[34]. The outer layer of the submerged oil and gas pipeline, which is in 

contact with the surrounding earth, might experience many forms and types of corrosion. Crevice 

corrosion commonly occurs in crevices [35], pitting corrosion can result in leaks, holes, and gouges 

on the outer surface of pipes [36], and galvanic corrosion causes uniform loss of material [37], [38]. 

In addition, the outer surface of underground oil and gas pipelines frequently experiences stress 

corrosion cracking (SCC) as a result of the combined effects of tensile forces and other corrosion 

mechanisms [39]. Steel pipelines can have abrupt, catastrophic fractures as a result of stress corrosion 

cracking (SCC). 

We used two-dimensional convolutional neural networks to analyze the images of corroded oil 

facilities provided by drones, with the aim of extracting features from these images, particularly those 

difficult to reach by traditional inspection methods. We then used these images as inputs to the 

network. We improved the architecture of this network by adjusting certain parameters to achieve the 

highest accuracy results, and we calculated all network evaluation parameters, which we will explain 

later. 

2.2. Internal Corrosion 

Corrosion requires the presence of an electrolyte, such as water, which is connected with crude 

oil during production operations. Different ionic species, known to cause corrosion, may contaminate 

this water. Due to its high groundwater content, Iraqi oil is classified as a wet oil, which causes the 

pipelines to get wet when the water comes into contact with their walls. Once this occurs, the physical 

and chemical characteristics of the water, the presence of sediments, and the amount of oxygen 

influence the rate of corrosion. Even when the water content of the oil or product is as low as 0.1%, 

extensive corrosion in low areas at moderate speeds has led to the failure of many pipelines. Water 

tends to collect in low areas that are normally difficult to reach. The small amounts of water in pipeline 

crude and products make it extremely difficult to gather samples for testing. Internal corrosion can 

result in decreased production since the accumulation of corrosion by-products in the pipeline might 

pose a significant risk to people, assets, and the environment in the case of a through-wall failure [40]. 

Currently, we employ multiple corrosion models to directly assess the interior corrosion of pipelines. 

However, these models are subject to certain limitations. It lacks the ability to assess the rate at which 
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corrosion occurs and identify the areas with the most severe corrosion, as well as calculate the 

remaining lifespan of the pipe. These are the primary corrosion issues that pose challenges to the 

transmission pipelines for crude oil and products. The corrosion mechanisms can occur at a rapid rate, 

posing a threat to pipelines by causing leaks within a few months if not properly managed. The 

ultrasonic sensor probes enable the direct observation of corrosion growth in its original location [41]. 

Furthermore, one can track upsets, which provide prompt indications of system alterations. Therefore, 

we can make precise and reliable evaluations and prevent unexpected events and potential hazards by 

quantifying the real rates of corrosion in a system. This, in turn, allows for a more efficient allocation 

of resources, such as using pipeline thickness gauges [42]. For this type of corrosion, our neural 

networks were created that relies on the inputs of ultrasonic sensors. These sensors were installed at 

specific points in the oil pipeline. Corrosion rates and the operational lifespan of the pipe were also 

calculated according to the standards of the American Petroleum Institute. The network was trained 

on these inputs. Regression operations were performed, and all error rates were calculated. After this, 

an interface for our system was designed for the purpose of facilitating the task for users. 

2.3. Convolutional Neural Networks (CNN) 

In the domain of deep learning, the convolutional neural network (CNN) is widely recognized as 

the most renowned and often utilized method [43]-[48]. An advantage of CNN over its predecessors 

is its ability to autonomously detect relevant features without human supervision [49]. Several 

domains, including computer vision [50], voice processing [51], and face recognition [52], have 

widely utilized convolutional neural networks (CNNs). Similar to traditional neural networks, the 

neuronal structure of human and animal brains served as the basis for the design of CNNs. More 

precisely, an intricate arrangement of cells composes the visual cortex in a cat's brain. CNN replicates 

this arrangement [53]. Good fellow et al. [54] outlined three primary advantages of the Convolutional 

Neural Network (CNN): comparable representations, limited interactions, and parameter sharing. 

CNNs utilize shared weights and local connections to effectively utilize the 2D structures of input 

data, such as visual signals, in contrast to traditional fully connected (FC) networks. This method 

employs a minimal number of parameters, streamlining the training process and enhancing the 

network's speed. This is identical to the cells seen in the visual cortex. These cells have the ability to 

perceive only tiny parts of a scene, rather than the entire scene. In other words, they extract the local 

correlation present in the input, similar to local filters over the input. A common type of CNN that 

looks a lot like the multi-layer perception (MLP) has a lot of convolution layers, then sub-sampling 

(pooling) levels, and finally fully connected (FC) layers. 

The design of a conventional two-dimensional convolutional neural network (2DCNN) 

specifically targets the spatial characteristics found in 2D images. It achieves this by utilizing locally 

connected convolutional filters with tied weights, which operate on multiple pixels simultaneously 

instead of individual pixels [55], [56]. This approach enhances the detection of inter dependencies 

among pixels, leading to improved performance. A 2DCNN initially transforms the 2D input data into 

3D data, defining dimensions for width, height, and depth. We set the depth to 1 for a one-band picture 

and 3 for a three-band image, which represents the red, green, and blue channels. Next, we acquire a 

feature map by repeatedly applying convolution operators to sub-regions of the entire image. This 

process involves the addition of a bias term, followed by the application of a nonlinear activation 

function. 

We can represent CNN’s layers for the convolutional layer process as shown in Equation (1). 

 𝐶𝑙
𝑗

= 𝑓 ( ∑  𝐶𝑖
𝑗−1

∗ 𝑤𝑖𝑙
𝑗

𝑖∈𝑃𝑛

+ 𝑏𝑙
𝑗
) (1) 

Where 𝑙: the number of layers; 𝑗 represent component; 𝑤: represent weight; 𝑏: represent basis. 

Equation (2) represents the maximum pooling procedure, which we can mathematically expressly 

using the following formula. 
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 𝐶𝑙
𝑗

= 𝑓(𝑤𝑙
𝑗

∗ max(𝐶𝑖
𝑗−1

) + 𝑏𝑙
𝑗
) (2) 

Where 𝐶𝑙
𝑗
 denotes the process of performing the pooling operation. 

Equation (3) represents a (FC) layer that is using to sorts the hidden features that come from the 

kernel into groups. [57]. 

 𝑓𝐶𝑗+1 = (∑ 𝑤𝑖𝑙
𝑗
𝑎𝑗(𝑖) + 𝑏𝑙

𝑗

𝑛

𝑖=1

 ) (3) 

However, when dealing with 1D time-series data, such as the dataset mentioned in this research, 

the 1DCNN (1-Dimensional Convolutional Neural Network) is typically a more optimal selection 

[58]. Fig. 3 illustrates the distinction between 2DCNN and 1DCNN. Applying 2DCNN to a 2D image 

yields a 2D image. On the other hand, applying 1DCNN to a 1D image or a numerical dataset produces 

a 1D image. The convolutional filter of 1DCNN operates on one-dimensional data, enabling it to 

discern and scrutinize the interrelationships among various elements in the data. 

 

Fig. 3. The typical architecture of 1D-CNN and 2D-CNN 

2.4. American Petroleum Institute (API)  

The API is the official national trade association that represents every aspect of the natural gas 

and oil sector in the United States.  It encompasses over 650 firms engaged in various parts of the 

petroleum industry, including production, refining, and distribution. The association's objective is to 

advocate for safety in the worldwide oil and gas industry and to shape public policy to support a robust 

and sustainable US oil and gas sector. The API was established in 1919 as a regulatory body 

responsible for establishing and enforcing standards. Over the course of its initial century, API has 

formulated over 700 standards aimed at improving operational and environmental safety, efficiency, 

and sustainability. While API's main concentration is on domestic matters, their work has gradually 

extended to encompass an increasing international aspect. As a result, API is now globally 

acknowledged for its diverse range of programs. API collaborates annually with prominent industry 

subject-matter experts to uphold its collection of more than 800 standards and recommended practices. 

API standards aim to enhance the efficiency and cost-effectiveness of industry experts' operations, 

ensure compliance with legislative and regulatory requirements, prioritize health and safety, and 

preserve the environment. Iraqi oil firms adhere to the corrosion calculation guidelines set by the 

American Petroleum Institute (API), namely the API 570 standard. 

2.5. Methods for Detecting the Corrosion 

Given the points mentioned earlier, we will utilize the 1DCNN method to analyze the ultrasonic 

sensor dataset of the oil company. We made extensive efforts to gather a substantial amount of data 

to improve the system's performance. The 2DCNN algorithm is specifically designed to handle images 

captured by drones from the same source, particularly in remote locations that are challenging to 
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access for manual inspection processes. The work was conducted in multiple stages, outlined as 

follows: (1) The data was classified after being labeled and filtered again to improve the accuracy of 

the images. The images were then divided into a training set and a validation set. (2) The dataset was 

trained using 2CNN with the help of Anaconda Navigator and MATLAB R2023b for classification 

and regression, respectively. (3) All classification parameters and regression were calculated to 

evaluate the system's performance. Subsequently, we converted the aforementioned code into an 

intuitive environment by utilizing MATLAB Designer, a graphical user interface, thereby improving 

its accessibility and usability. 

3. Mathematical Model 

Corrosion can be defined as “an attack on a metallic material through reaction with its 

surrounding medium” [59]. For metals, the most common type of corrosion is wet corrosion, where 

the surrounding medium is typically water containing different dissolved substances. An 

electrochemical reaction typically transforms water into an electrolyte on the metal's surface. An 

electrochemical reaction is a chemical reaction that entails the transfer of electrons through a common 

medium, an electrolyte, between the materials and substances involved. We refer to this reaction as 

an oxidation reaction for metals [60]. A typical oxidation reaction for some theoretical metal, M, is 

shown in equation (4), where it is observed that the metal “loses” electrons, 𝑒−. In this reaction, n is 

the number of electrons, and 𝑛+indicates that the metal, 𝑀, becomes a positively charged ion after 

oxidation. 

 𝑀 ⟹  𝑀n+ + 𝑛𝑒− (4) 

3.1. Governing Equations 

The equation is in accordance with the API 570 standard related to the corrosion of oil pipelines, 

through which corrosion rates are calculated in the short and long term, as well as calculating the 

remaining operational life of the pipes as a result of corrosion and classifying corrosion into four 

levels, noting that these standards are used in Iraqi oil and gas companies. These assumptions are 

reflected in Equations (5) and (6). 

1. The short term (𝑆. 𝑇.) corrosion rate of piping circuits shall be calculated from the following 

formula: 

 𝑆. 𝑇 =  ((𝑇𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 −  𝑇𝑎𝑐𝑡𝑢𝑎𝑙) ∕ 𝑇𝑖𝑚𝑒𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑎𝑛𝑑 𝑎𝑐𝑡𝑢𝑎𝑙 𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛𝑠) (5) 

Where T is the thickness of the pipeline and is read using ultrasonic thickness gauges at certain points 

that are set according to the standards previously reviewed around the pipe. And the unit of 𝑆. 𝑇 is 

(mm/year). 

2. The long term (𝐿. 𝑇.) corrosion rate of piping circuits shall be calculated from the following 

formula: 

 𝐿. 𝑇 =  ((𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 −  𝑇𝑎𝑐𝑡𝑢𝑎𝑙) ∕ 𝑇𝑖𝑚𝑒𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑛𝑑 𝑎𝑐𝑡𝑢𝑎𝑙 𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛𝑠) (6) 

also, the unit of L.T is (mm/year). 

Most codes recommend calculating both the long-term and short-term corrosion rates. We 

calculate the short-term corrosion rate by measuring the amount of metal lost between the last two 

thickness readings at a TML (thickness measurement location). We determine the long-term corrosion 

rate by calculating the metal loss between the initial and final thickness measurements at a specific 

time. We do this using a technique known as Total Metal Loss (TML). 

Due to the frequent changes in inspection process conditions over the equipment's lifespan, the 

short-term corrosion rate is typically a more accurate representation of the current conditions. 
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However, the accuracy of the corrosion rate is more likely to be compromised when there are 

imprecise thickness readings. The corrosion rate over a long period of time is minimally influenced 

by imprecise measurements of thickness. 

In remaining-life estimations, the corrosion rate typically considered is the higher value between 

the long-term and short-term rates. Depending on the short- or long-term, corrosion rates are classified 

into four categories: 

• Low if corrosion rate less than (0.025) 

• Moderate if corrosion rate between (0.025 ˗ 0.12) 

• High if corrosion rate between (0.13 ˗ 0.25) 

• Severe if corrosion rate larger than (0.25) 

Remaining Life Calculations: 

The remaining life at a specific thickness measurement location is the length of time remaining 

until this point corrodes to the retirement thickness.as show in Equation (7). 

 𝑅. 𝐿 =  ((𝑇𝑎𝑐𝑡𝑢𝑎𝑙 −  𝑇𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑) ∕ 𝑐𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒) (7) 

Where 𝑇 is required is thickness measurement by design formals before corrosion allowance and 

manufacture tolerance are added. Note when installing new piping systems or modifying existing 

ones, it is necessary to use one of the following methods to establish the expected corrosion rate. This 

will allow us to predict the remaining material thickness at the time of the next inspection. 

1. The client can determine the corrosion rate of a piping circuit by analyzing data on piping systems 

made of the same material and used under similar conditions. 

2. If data for the same or similar service is unavailable, one can calculate the corrosion rate for a 

pipe circuit using the owner's or user's experience or published statistics on piping systems in 

comparable service. 

3. If none of the methods mentioned in Item (1) or Item (2) we can determine the corrosion rate, 

conduct the initial thickness measurements of the piping system within 3 months of service using 

nondestructive techniques. Corrosion monitoring instruments, such as corrosion coupons or 

corrosion probes, might be helpful in determining the time of these thickness measurements. We 

will take successive measurements at suitable intervals until we determine the corrosion rate. 

For Current Piping Systems Corrosion rates must be computed either in the short-term or the 

long-term. For the short-term calculation, data from the two most recent inspections will be utilized. 

For the purposes of long-term calculation, the wall thicknesses obtained from the most recent and 

original (or nominal) inspections should be utilized. Typically, it is advisable to utilize the higher of 

these two rates for estimating the remaining lifespan and determining the subsequent inspection 

interval. 

4. Method Pipeline Corrosion Detection and Localization 

This study is divided in two parts first one focus on visually detecting corrosion (external 

corrosion) by using 2DCNN.Corrosion is the deterioration of a metal and can be visually identified 

by its color. Therefore, the first method uses traditional computer vision techniques to extract parts of 

images that include corrosion, based on their color It was obtained via drones for places that cannot 

be reached due to their location this data used for classification if there is corrosion or not After that, 

all parameters related to this classification are calculated .The second part focuses on (internal 

corrosion) by employs 1DCNN, deep learning computer vision algorithms focus on the dataset that 

obtained from ultrasonic sensors to read the thickness of multi points on pipeline after that corrosion 

rates were calculated for each point. by the function of the regression, we can determine the location 
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of the highest corrosion in the pipe, in addition to calculating the remaining operational life of that 

pipe, as well as evaluating the corrosion rate. Note that all the data was provided by Iraqi oil 

companies. Fig. 4 displays the suggested methodology flowchart for employ CNN to classification of 

corrosion. 

 

Fig. 4. Flowchart for employ CNN to classification of corrosion 

4.1. External corrosion (Data Collection) 

Supervised learning uses 'labeled data' to train neural networks. The data, which may consist of 

an image, will contain information about the presence or absence of corrosion in that image. Generally, 

a larger amount of training data results in higher accuracy in deep learning. Research has shown that 

utilizing a larger amount of training data is more effective than using more properly labeled data to 

create supervised learning models, as long as there are not many instances of wrong labeling of the 

training data, also known as adversarial labeling [61]-[63]. To establish a robust and comprehensive 

correlation between the inputs and desired outputs, a sufficient quantity of data is required. Labeling 

vast quantities of data is the initial and crucial stage in creating precise deep learning models, 

especially when a publicly accessible dataset is not available. This research involves categorizing the 

dataset into two distinct groups: corrosion and no corrosion. The complete dataset comprises a total 

of 162 photos, consisting of 91 images depicting corrosion and 71 images showing no signs of 

corrosion. Professionals specializing in corrosion engineering obtained the photographs from the Iraqi 

oil company and analyzed them. 

4.1.1. Data Exploration 

We divided the complete dataset into three parts: 70% for training, 20% for validation, and 10% 

for testing. The three groups of datasets exhibit the same ratio of corrosion and no corrosion, with 

56.2% of the photos depicting corrosion and 43.8% depicting no corrosion, as illustrated in Fig. 5. 

Next, these images were processed through the pixel normalization and data augmentation. 

4.1.2. Normalization of Pixels 

In the case of image data, the pixel values are whole numbers that range from 0 to 255. When 

neural networks analyze inputs with greater weight values, their learning process decelerates. 

Normalizing pixels involves scaling the integer values to a range of 0 to 1. This technique optimizes 

computational efficiency and is considered very beneficial. 

4.1.3. Data Augmentation 

Data augmentation might be necessary if the training data is insufficient to create a model that 

can be applied broadly. So, it might be beneficial to consider implementing various approaches. One 
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possible approach is to over sample the data, which involves generating additional data points that are 

similar to the training data. However, this can potentially result in over-fitting, as generating 

excessively similar data points in the training set can negatively impact performance during testing. 

Additionally, we implemented several image augmentations, including zooming in, sheering, 

horizontal flipping, and vertical flipping. Implementing data augmentation is a valuable technique to 

increase the amount of data in the current dataset and introduce slight modifications and variations to 

prevent the model from becoming too specialized to the training data. 

 

Fig. 5. Dataset distribution of samples labeled as CORROSION and samples labeled as NO CORROSION 

4.1.4. Modelling 

The optimal performance model we discovered consists of four 2D convolutional layers, each of 

which is then followed by a max-pooling layer. In addition, we incorporated a drop-out layer following 

each max-pooling layer in order to mitigate over fitting to the training dataset. Eventually, after 

undergoing flattening, it is inputted into a fully connected layer that employs ReLU activation. Finally, 

we employed the sigmoid activation function to estimate the output probabilities for this binary 

classification task. As depicted in Fig. 6. 

 

Fig. 6. Architecture of convolutional neural networks 

We utilized Jupyter Notebook within the Anaconda Navigator, specifically employing Python 

3.7, in conjunction with TensorFlow 2.1 and Keras libraries. The system functioned on the Windows 

11 operating system, utilizing an Intel i9 and nvidia geforce gtx 1650. All classification parameters 

were calculated based on the following equations. 

Equations (8), (9), (10), (11), and (12) are utilized to assess the classification efficacy of different 

methods and additional variables. 
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 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (8) 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (9) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (10) 

 
Specificity =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (11) 

 
𝐹_𝑠𝑐𝑜𝑟𝑒 =

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (12) 

TP, TN, FP, and FN represent the acronyms for true positive, true negative, false positive, and 

false negative respectively, we obtained an accuracy of training of about 86.81%. 

4.2. Internal Corrosion (Data Collection) 

Advancing to the next stage, we enhanced our methodology to not only classify the existence or 

nonexistence of external corrosion but also to estimate the location with the most significant rate of 

internal corrosion on the pipeline and assess the remaining lifespan of the pipeline. We classified the 

corrosion into four levels using MATLAB 2023b, incorporating regression methods, particularly 

CNN regression. This cutting-edge technology enables us to estimate uninterrupted numerical values, 

such as the precise position and rate of corrosion in a transmission line. 

4.2.1. Data Collection 

The oil field operator collected the data using ultrasonic sensors installed along the length of the 

oil pipe. We divided these sensors into three groups (A, B, and C): group A at 2.5 km, group B at 5 

km, and group C at 7.5 km. The company operating the oil field approved these distances based on 

their engineering examination standards. Each group comprises four sensors. Four sensors were 

placed around the perimeter of the oil pipe at each of 12 o’clock, 3 o’clock, 6 o’clock, and 9 o’clock 

to read the thickness periodically. The thickness of the oil pipe at those points was read from each 

sensor, The size of the collected datasets is (250 rows of pipeline thickness obtained from sensors) 

and on the basis of these readings, the corrosion rate was calculated for each point. As for the slope, 

it can predict the highest corrosion rate according to the criteria of API 570, classify this corrosion, 

locate the sensor that indicates the highest wear rate, and calculate the remaining operational lifespan 

of the pipeline based on these rates. Table 1 shows the sample of this data that was gathered. 

Table 1.  Shows the sample of this data that was gathered from sensors 

Sensor’s 

location 

Initial wall  

Thickness (mm) 

Sensors Group 

A (mm) 

Sensors  

Group B (mm) 

Sensors Group 

C(mm) 
12 o’clock 12 11.880 11.760 11.977 

3 o’clock 12 11.975 11.890 11.770 

6 o’clock 12 11.750 11.976 11.880 

9 o’clock 12 11.976 11.900 11.745 

 

Based on the ultrasonic sensor readings from the previous table, Table 2 shows the corrosion 

rates for one year and Table 3. show the remaining lifespan if these rates persist. The American 

Petroleum Institute's standards guided all calculations. 

Important remark All ultrasonic thickness sensors require calibration based on the sound velocity 

in the material under measurement. Coatings exhibit a distinct speed of sound compared to metal, so 

it is essential to exclude them from the measurement. By utilizing several echoes, the measurement 

process effectively eliminates all coatings, regardless of their thickness, up to 6 mm. The used probe 
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is a 2.25 MHz probe that is effective for inspecting highly corroded metal. The resolution of the device 

is 0.1 mm (0.005 inch), and its accuracy is ±0.1 mm (0.005 inch). The device sends out an ultrasonic 

pulse that passes through both the coating and the metal, then bounces back from the wall behind. 

Only a fraction of the reflected sound wave passes through the coating each time it resonates within 

the metallic material. The temporal intervals between the minor reverberations provide information 

on the temporal intervals of the reverberations within the metallic material, which are indicative of the 

thickness of the metal. The gauge will automatically interpret the echoes and calculate the thickness. 

The 2.25 MHz probe has a wide measurement range, which is generally considered suitable for most 

applications. This technology is commonly known as the automatic measurement verification system, 

as depicted in the Fig. 7. 

Table 2.  The corrosion rates for one year (mm/year) 

Sensor’s  

location 

C.R Group 

A (mm/year) 

C.R Group 

B (mm/year) 

C.R Group 

C (mm/year) 
12 o’clock 0.120 0.240 0.023 

3 o’clock 0.025 0.110 0.023 

6 o’clock 0.250 0.024 0.120 

9 o’clock 0.024 0.100 0.255 

Table 3.  Remaining lifespan in year 

Sensor’s location 
R.L Group 

A (year) 
R.L Group 

B (year) 

R.L Group 

C (year) 

12 o’clock 49 24 260 

3 o’clock 239 54 25 

6 o’clock 23 249 49 

9 o’clock 249 59 23 

 

 

Fig. 7. The utilized ultrasonic probe technique 

4.2.2. 1DCNN Regression Architecture 

Developed a one-dimensional CNN model specifically tailored to learn the correlation between 

input data from ultrasonic sensors and the corrosion rate of an oil pipelines. 

• Input layer: Specify the dimensions of the data input in this layer. We possess a total of twelve 

columns. Denotes the recorded data from the sensors. 

• Convolution layer: we used dual-layer each of it is contains of a set of filters 16 (3x3) whose 

parameters need to be learned. The height and weight of the filters are smaller than those of the 

input volume. Each filter is convolved with the input volume to compute an activation map 

made of neurons. 
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• Relu layer: It is a non-linear activation function used in multi-layer neural networks or deep 

neural networks. Two layers of ReLU were used for our system. 

• Fully connected layer: A neural network with a fully connected layer connects each input node 

to each output node. Not all nodes in a convolutional layer have connectivity. We are using two 

layers of FC; these layers consist of a singular neuron that produces a value representing the 

predicted level of corrosion. 

• Regression layer: The aim of regression is to identify how the input variable (explanatory 

variable) influences the output variable (response variable). Typically, we employed regression 

tasks, such as the prediction of continuous variables like the corrosion rate error. 

Following the planning of CNN's structure. Follow the steps in the 1DCNN flow chart in Fig. 8 

to process the dataset. 

 

Fig. 8. Flow chart of 1DCNN regression 

4.2.3. Regression Process 

The next step involves splitting the dataset into a 70% training set and a 30% testing set after 

loading it into the input layer. This allows for evaluating the model's performance and measuring its 

accuracy. Utilize regression techniques, specifically 1D CNN regression, to predict the rate and 

location of corrosion and calculate the operating life based on these results, just like a data scientist 

would. We have the capability to project continuous numerical values using advanced technology. 

Just like a data scientist, we employed CNN regression and calculated various metrics to assess the 

precision of our forecasts. as represented by equations (13), (14), (15), (16), and (17). 

1. Mean square error (MSE) 
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 𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖

^)
2

𝑛

𝑖=1

 (13) 

2. Root mean square error (RMSE) 

 𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 (14) 

3. Mean Absolute Error (MAE) 

 𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖

^|

𝑛

𝑖=1

 (15) 

4. Root Mean Absolute Error (RMAE) 

 𝑅𝑀𝐴𝐸 = √𝑀𝐴𝐸 (16) 

5. Relative Error (RAE) 

 𝑅𝐴𝐸 =
1

𝑛
∑ |

𝑦𝑖 − 𝑦𝑖
^

𝑦𝑖

|

𝑛

𝑖=1

× 100% (17) 

Where: 𝑛 is number of samples; 𝑦𝑖is the actual target value; 𝑦𝑖
^ is the predicated value 

Through the computation of these metrics, we can thoroughly assess the effectiveness of our 

CNN regression model in accurately predicting the location of corrosion and estimating the lifespan 

of pipelines. This enables us to assess the precision and enhance the regression training procedure. 

4.2.4. MATLAB App Designer 

We have completed the regression training and computed the system parameters. The code 

underwent a transformation process to create a user-friendly platform using MATLAB App Designer. 

We chose this approach due to its recognized ability to enhance accessibility and usability. App 

Designer, with its user-friendly graphical user interface (GUI), enables the development of interactive 

MATLAB apps. Fig. 9 illustrates the completed final design. 

The first field represents the initial thickness of the pipe before corrosion, and the second field 

represents the time period over which the inspection was performed. The other fields represent the 

inputs of the sensors to read the thickness of the pipe after it has been exposed to corrosion, according 

to the points where these sensors were installed. When you press the scan button, the highest corrosion 

rate will be calculated based on the API 570 standard equations, as well as the classification of this 

corrosion (LOW, MODERATE, HIGH, SEVERE), determining the location of this corrosion, and 

calculating the remaining operational life. 

5. The Results 

The progress of training our deep learning model (2DCNN) for external corrosion across each 

epoch is shown in Fig. 10. The model terminated prematurely at epoch 40 out of a total of 100 epochs 

when the selected performance metric, which aims to minimize loss, ceased to show any further 

improvement. To address this issue, we can introduce a delay in the trigger mechanism based on the 

desired number of epochs without any observed improvement. We can achieve this by adjusting the 

level of "tolerance." For this particular scenario, we assigned a value of 7 to the variable patience. 

From the chart on the left, it is evident that as the number of epochs rises, the lines representing 

validation loss and training loss converge. This indicates that our model does not exhibit significant 

overfitting or underfitting. In the chart on the right, the line representing the accuracy scores for 

training and validation gradually comes together and reaches a point of near equality towards the 

conclusion. 
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Fig. 9. Predicting the highest rate and location of corrosion as well as the operational lifespan (GUI) 

 

Fig. 10. Model learning curves: loss and accuracy score 

The AUC value of our test reaches 93.31%, indicating that our top-performing CNN model 

effectively ranks the data by its class in the test set Fig. 11. show the ROC curve and Confusion Matrix. 

The aim of this research is to get a high recall rate for the detection of corrosion. This is crucial 

since any instances of missed corrosion data or delayed treatment can result in the catastrophic 

breakdown of structures, leading to the loss of resources or lives. The highest-performing model in 

our study achieved a recall rate of 85.86%, confirming exceptional accuracy in detecting corrosion. 

The confusion matrix, as seen in Fig. 11, indicates that our model accurately categorized the rate of 

true positives and true negatives at 46.70% and 40.11%, respectively, in the test set. Simultaneously, 

the rate of false positives and false negatives is 8.79% and 4.4%, respectively, indicating that our 

model performed adequately in identifying whether an image exhibits corrosion or not. All these 

parameters are calculated as shown in Table. 4. 

After achieving high accuracy in the classification step, the next phase employs a one-

dimensional convolutional neural network (1DCNN). Fig. 12 demonstrates a favorable level of 

accuracy in both the training and testing phases. The validation root mean square error (RMSE) is 

0.05567, and the method chapter gives a full analysis of how well the CNN regression model predicts 
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the rate of internal corrosion in oil pipelines. This evaluation involves measuring all parameters related 

to the regression topic. This enables us to assess performance and make necessary enhancements. 

Improve training outcomes by ensuring that the dataset is both balanced and varied and by increasing 

the size of the dataset. 

 

Fig. 11. The ROC curve and confusion matrix 

Table 4.  Evolution parameters of classification 

Parameters Value 
Accuracy 0.8681 

Precision 0.8947 

Recall 0.8586 

Specificity 0.8795 

F1-Score 0.8763 

 

 

Fig. 12. Regression training process 

Fig. 13 displays the visualized predictions. The horizontal axis corresponds to the actual values, 

while the vertical axis, or y-axis, corresponds to the predicted values. We observe that the regression 

line intersects above the diagonal line, symbolizing the ideal prediction. Fig. 14 displays the visualized 

predicted value aligning with the true value, indicating a commendable evaluation performance of our 

CNN model. 

Throughout this procedure, we made alterations to various training parameters, including the 

quantity of layers, learning rate, epoch, and batch size, in order to attain the most optimal results. Prior 
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to model construction, data preprocessing is essential. Preprocessing the data prior to feeding it into 

the neural network expedites the convergence of weight parameters, leading to optimal performance. 

We conducted an evaluation of the system's overall performance and computed the parameters for 

assessment, as shown in Table 5. Data examination processes using GUI shown in Fig. 15. 

Table 5.  Regression evolution parameters 

Parameters Value 
Mean Square Error  0.00311 

Root Mean Square Error  0.19530 

Mean Absolute Error  0.00993 

Root Mean Absolute Error  0.09966 

Relative Error 0.00040  

 

  

Fig. 13. Displays a graphical representation of the 

predicted values compared to the actual 

values 

Fig. 14. illustrates the comparison between sample 

values and ser 

 

Fig. 15. Data examination processes using GUI 
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6. Conclusion 

This study aims to create two models of networks (2DCNN for external corrosion) and (1DCNN 

for internal corrosion) while previous research has focused on one of them only, internal corrosion or 

external corrosion. We relied on real data provided to us by companies specialized in the oil field, 

whether in the form of pictures of corrosion or reading ultrasonic sensors of pipe thickness.as 

mentioned in the methodology section we used the two-dimensional neural network (2D CNN) for 

classification to examine the presence or absence of external corrosion from the images provided via 

drones especially to the places that are difficult to reach we labeled these images, upload it to our 

2DCNN model, and tune parameters to get the best performance possible for the CNN model after 

obtaining all the parameters responsible for evaluating the network, we moved to the next stage we 

use one-dimensional neural network for regression to calculate the corrosion rates for each sensor and 

determine where the highest percentage of corrosion is located, then this percentage is relied upon for 

the purpose of calculating the remaining life of the oil pipe. 

6.1. Limitations of Our Work 

This study suggests constructing a deep learning model utilizing the Convolutional Neural 

Network (CNN) approach to automatically learn and identify corrosion behaviors. The results validate 

that the applied deep learning Convolutional Neural Network (CNN) algorithm is a highly promising 

technique for the automatic identification of corrosion. Our model can effectively identify corrosion 

problems with high precision by providing a diverse range of corrosion images. An automated 

corrosion detection model with high accuracy can decrease the expenses associated with corrosion 

inspections and minimize the risk to people's lives. Despite the effectiveness of this study in early 

detection of corrosion, whether internal or external, there are still some limitations, which are: 

1. The process of gathering data from ultrasonic devices or drones takes a long time, so this work 

needs a lot of data history about the study topic before using it. 

2. The classification, localization, and prediction results of corrosion detection will not be as 

accurate if the data set or number of sensors is not enough. 

3. External factors could cause the sensors to record wrong information, which could lead to a 

false result. 

4. If one of the devices malfunctions, it could lead to the entry of incorrect information, 

disrupting corrosion detection and other processes that rely on it. 

6.2. Comparison with Previous Research 

The use of deep learning techniques does not require the installation of additional equipment or 

high human resources, so this method reduces the costs of traditional projects and also reduces human 

intervention, which over time may lead to some unintended errors. This method also contributes to 

reducing the time required to detect corrosion and make Proactive maintenance. This technique is 

easier to understand than most others used in this field, and it gives very accurate results for both 

corrosion rate and location. 

6.3. The primary Obstacles Encountered in this Study 

1. Sparse Data Challenges: The data of pipeline corrosion, especially related to detecting 

corrosion, frequently contains gaps and inconsistencies. Convolutional neural networks (CNNs) 

necessitate a substantial amount of data to achieve optimal performance. And also, Insufficient 

data can lead to models exhibiting overfitting or poor generalization. 

2. One limitation of class imbalance of data is that the distribution of corrosion and non-corrosion 

events is often unbalanced. Convolutional neural networks can face difficulties when dealing 

with imbalanced datasets, leading to biased predictions or decreased efficiency in detecting 

corrosion. 
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3. Data requirement: Initially, during the research, the quantity of data needed to accurately 

represent corrosion (in the form of images or a dataset from pipeline inspection) was 

unknown. 

6.4. The Following are Recommendations for Further Study in this Field 

There is a possibility of further enhancement in the next work. In order to enhance the overall 

accuracy of the model, it is vital to augment both the quantity and diversity of the dataset. Previous 

research in corrosion detection observed that an artificial intelligence model requires 65,000 labeled 

images to achieve accuracy comparable to human level [64].  

The labeled images have a significant impact on the model training when considering model 

accuracy. The quality of image tagging directly influences the rate at which the model improves in 

accuracy. Identifying corrosion is a profoundly difficult task. Experts with comprehensive knowledge 

of the various materials involved are required to proficiently annotate corrosion photographs of 

superior quality. Furthermore, it requires the expertise of specialists to evaluate the distinction 

between substances that could potentially be brown or red paint and the process of corrosion. 

Increasing the number of ultrasonic sensors along oil pipelines or crude oil tanks is necessary for 

the purpose of increasing the accuracy of the results of this system. It is also possible to include 

additional sensors, whether temperature or humidity sensors, and operate them in accordance with the 

standards of the American Petroleum Institute. 
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