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ABSTRACT

The vehicles are prone to accidents during cornering on a wet or low fric-
tion coefficient roads if the longitudinal velocity (Vx) and steering angle (δ)
are increased beyond a certain limit. Therefore, it is of major concern to an-
alyze the behaviour and define the stability boundary of the vehicle for such
scenarios. In this paper, stability analysis of a 2 degrees of freedom nonlin-
ear bicycle model replicating a car model including lateral (sideslip angle
β) and yaw (yaw rate r) dynamics only operating on a wet surface road
has been performed. The stability is analysed by utilizing the phase plane
method and bifurcation analysis. The obtained converging and diverging
nature of the trajectories (β, r) depicts the stable and unstable equilibrium
points in the phase plane. The movement of these points results in the tran-
sition of the stability known as bifurcation due to the change in the control
parameters (Vx, δ). The Matcont/Matlab is utilized to obtain the bifurca-
tion diagrams and the nature of bifurcations. The obtained results show
that a saddle node (SNB) and a subcritical Hopf bifurcation (HB) exists for
steering angle (±0.08 rad) and higher than (±0.08 rad) with Vx = (10 - 40)
m/s respectively. The SNB and HB denotes the spinning of the vehicle and
sliding of the vehicle respectively, thus generating a unstable behaviour. A
stability boundary is obtained representing the stable and unstable range of
parameters.

This is an open access article under the CC-BY-SA license.

1. Introduction

Driving the vehicle on wet or low friction coefficient roads are dangerous, as the accidents are
more frequent on these harsh road conditions. Due to the low friction coefficient, the vehicle does not
experiences the required amount lateral force on tires to track the curvature of roads and thus resulting
in lateral instability [1]. Lateral instability refers to the crossing of the vehicle states including yaw
rate and sideslip angle beyond the defined stability limits. On the low friction roads, the sideslip
angle increases beyond the stability limit resulting in the lateral slip of the vehicles. Bounding these
state variables within the stability limits at low friction surface roads are therefore important to avoid
accidents [2], [3]. The vehicle rapidly enters the nonlinear operating regions with sharp cornering on
low friction surfaces. The nonlinear vehicle dynamics have a major impact on the vehicle stability.
Consequently, consideration of the nonlinear characteristics is required on such low friction roads [4].
Therefore, to reflect the nonlinear characteristics, the Pacejka tire model is adopted in this paper. In
[5], a 2 degrees of freedom model (bicycle model) is developed by assuming that the left and right tires
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are assumed to have similar behaviour and lumped to form single front and rear tires. The suspension
movements, slip phenomena, and aerodynamic influences are neglected. The longitudinal velocity is
assumed to be constant, therefore different values of velocity are opted for stability analysis.

The stability analysis of the nonlinear systems are observed with the help of phase plane and
bifurcation methods [6]. The phase plane is a two dimensional instantaneous plot between two state
variables of the system. The plane shows the trajectory of the state variables for specific values of sys-
tem and input parameters. The plot will change with the change in these parameters. The convergence
and divergence of the trajectories towards a point illustrates the existence of the stable and unstable
equilibrium point or steady state respectively on the plane. The topological structure of the phase tra-
jectories above will alter when a particular parameter is changed. For instance, a stable equilibrium
point might have become unstable. It can be said that the system has undergone a bifurcation. Specif-
ically, the system’s stability will alter as its equilibrium point appears or disappears. A bifurcation is
a qualitative shift in dynamics, and the bifurcation point is the corresponding parameter value of the
bifurcation. Fork, Hopf, and saddle-node bifurcation are the three primary types of bifurcation [7]. A
Hopf bifurcation (HB) is classified into two types as subcritical and supercritical. At a subcritical HB
an unstable limit cycle exists prior to the bifurcation and forms the region of attraction of the stable
equilibrium. The limit cycle shrinks and disappears at the bifurcation. At a supercritical HB a sta-
ble limit cycle emerges after the bifurcation. Trajectories initiating close to the unstable equilibrium
exhibit oscillations with growing amplitude which are attracted by the limit cycle [8], [9]. A saddle-
node bifurcation, tangential bifurcation, or fold bifurcation is a local bifurcation in which two fixed
points (or equilibria) of a dynamical system collide and annihilate each other. The term “saddle-node
bifurcation” is most often used in reference to continuous dynamical systems. In discrete dynamical
systems, the same bifurcation is often instead called a fold bifurcation [10]. The position of saddle
points changes resulting in change in the portraits of the phases as the parameters of interest changes
including steering angle, longitudinal velocity and friction coefficient [11].

Phase plane analysis is one of the best methods for examining how control actions affect vehicle
dynamics [12]. With the help of this analysis, it can said that whether the vehicle is stable or not in
terms of lateral stability [13]. In [14], [15], authors have utilized the phase plane analysis to obtain the
stability region of the vehicle. Regarding vehicle control, the authors in [16] determined the vehicle’s
stability domain boundary under various road adhesion coefficients and suggested that the degree
of instability was determined by the distance between the unstable point and the stable boundary.
Authors in [17], [18] have utilized the phase plane of sideslip angle, sideslip rate and yaw rate to
define the stability region boundary of the 2 DOF vehicle model. Similarly, the two dimensional phase
plane analysis method is used to determine the vehicle stability region, and the ideal state trajectory
is always chosen to be the sideslip angle (β) and yaw rate r [19], [20]. In [21], authors have utilized
a (β - r) phase plane to obtain a stability envelop for the control purpose. The equilibrium points
are identified by the phase portrait approach, which also reveals the kind of instability present by the
shifting of points and offers control recommendations to stabilise the shifting of these equilibria [22].
The stability region of the phase plane vy-r is composed of the stable points in the dynamics of the
system for the vehicle stability [23]. Authors in [24] provided a dissipation of the energy analysis
approach and verified it in the (vy-r) phase plane for vehicle plane motion stability analysis.

A subcritical Hopf bifurcation in the nonlinear system is interpreted if the perturbations are
large, then the system will diverge away from stable equilibrium [25]. In [26], the dynamics of the
vehicle models are studied using bifurcation analysis. Stable and unstable steady states are mapped
out as a function of speed and steering angle. A lateral stability analysis is done on a non-linear
vehicle model with the help of phase plane and bifurcation analysis to find the stable region based
on the movements of equilibrium points. A 18 DOF unified dynamic model is developed to study
the influence of braking on the vehicle driving stability considering the challenges of coupling of
dynamics [27]. The study of bifurcation analysis of vehicles for the stability considering the coupling
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between the driving torque and steering angle is performed in [28]. In [29], authors have performed a
bifurcation analysis control for a ship model maneuvering in a straight line with a proportional control.
The vehicle stability is studied with the help of the movements of the equilibrium points locations
on the phase portraits. The control parameters are chosen as longitudinal velocity and the steering
angle [30]. Authors in [31], [32] have obtained a vehicle driving stability region between sideslip
angle β and sideslip rate β̇ for a nonlinear coupled dynamical system, utilizing bifurcation theory
and phase plane analysis respectively for the controller design. In [33], authors have implemented
bifurcation analysis on a traffic flow replicated by an artificial neural network car following model to
avoid traffic jams. A comparative study is done between vehicle steering controller utilizing phase
plane combined with bifurcation theory to obtain the driving stability region for lateral dynamics [34].
There are two types of bifurcation theory namely local and global. Properties near an equilibrium
point or a periodic orbit are the subject of local bifurcations. Hopf bifurcation and the saddle node
make up local bifurcation. It addresses the emergence of abrupt shifts from smooth, continuous
parameter variations in the system response. It is assumed that these changes will happen gradually
as long as the system’s equilibrium is maintained. In general, abrupt large transients are not covered
by this assumption [35]. Authors in [36] discusses the presence of Hopf bifurcation by analyzing the
limit cycle behaviour in the nonlinear 2 DOF single track bicycle model. In [37], authors have utilized
bifurcation theory for the 5 DOF nonlinear model to obtain the vehicle stability region.

Authors in [38], have obtained the stability region for state variables including sideslip angle,
yaw rate based on the vehicle parameters for the purpose of controller design with the control input
parameter chosen as the steering angle.A collision avoidance control system is implemented based
on a 2 DOF nonlinear bicycle model considering the slippery. The yaw rate constraint considering
side-slip angles is utilized to prevent the vehicle from becoming unstable on slippery roads [39].

Based on the literature review it is found that the phase plane analysis and bifurcation analysis
are the tools for analyzing the stability of the nonlinear vehicle model. A 2 DOF nonlinear vehicle
bicycle model is sufficient to replicate the lateral dynamics. Following are the areas of research gaps
are yet unexplored for the observing the vehicle lateral stability found:

• There are many nonlinear vehicle models proposed considering different dynamical equations.
Nevertheless, for the control and stability of a nonlinear vehicle model, the bifurcation analysis
work done is limited to linear and limited nonlinear models.

• The transition of stability of the vehicle models is analyzed for lower values of the control
parameter. Generally, the value of the steering angle opted for is up to (±0.08 rad). For lower
values, the vehicle models depict a simple saddle node bifurcation. The stability region for this
bifurcation does not focus on higher values of control parameters.

• Higher values of the control parameters for stability analysis are ignored to avoid the complex-
ity of finding the nature of bifurcation near the stability boundary inside the stability region.

Based on the found research gaps, authors have contributed the field of research with the following
works:

• To analyze the stability, a 2 DOF nonlinear vehicle informative model is utilized from the
literature for stability analysis. The phase plane and bifurcation method are implemented in
this model to find out the region of stability.

• To find out the type of bifurcation that exists for a higher value of steering angle and longitudinal
velocity, the value is increased beyond (±0.08 rad) and 20 m/s and thus the stability of the
vehicle is analyzed for the design of the controller constraints.

• For higher values of the control input parameters (Vx, δ), the nature of bifurcation near the
stability boundary is analyzed.

This paper primarily focuses on the stability analysis of the lateral dynamics of the nonlinear
vehicle on the wet road conditions. The lateral dynamics of the vehicle include sideslip angle and
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the yaw rate of the vehicle. Therefore, in this paper, a 2 degrees of freedom (DOF) nonlinear vehi-
cle model also known as bicycle model is adopted for the purpose of stability analysis. This model
is the simplified form of a vehicle model to replicate the lateral dynamics. Phase plane analysis is
performed on the lateral dynamics to observe the trajectories of sideslip angle and yaw rate based
on the change in the input parameters. The steering angle and longitudinal velocity are chosen as
input parameters as these are most prominent parameters utilized. Since the lateral dynamics does
not include longitudinal, vertical and wheel dynamics, therefore the results are limited to change in
the trajectories of yaw rate and sideslip angle. Bifurcation method is utilized to observe the type of
bifurcation exists for the change in bifurcation parameters (input parameters). Further, the article is
organized as follows: Section 1 deals with the mathematical model of the nonlinear vehicle. Equilib-
rium point and bifurcation theory is described in the Section 2. Section 3 is the simulation results and
discussion. Finally the conclusion is provided in the Section 4.

2. Method

This section discusses about the nonlinear mathematical vehicle model and the stability analysis.
For this analysis, the phase plane and bifurcation theory is exploited.

2.1. Mathematical Modelling

In this paper, a bicycle dynamic model as shown in Fig. 1 is utilized because it is mathematically
the simplest form to describe the dynamic characteristics of vehicles, it is shown to be sufficiently
accurate for vehicle behaviour. The assumption [5] are included while developing the mathematical
model. This model depicts the yaw rate and sidelsip angle as the lateral dynamics. As this model
includes only dynamic variables therefore it is easier to analyse the stability and to design the con-
troller. Including different other dynamics such as longitudinal, roll and wheel dynamics will increase
degrees of freedom and thus mathematical complexity of model [40].

Fig. 1. Vehicle bicycle model

The general nonlinear differential equation is represented in (1) as:

ˆ̇x = f(x̂, u) (1)

where, x̂ = [x1x2..xn]
′, n is the number of states. For the model adopted for the stability analysis,

states are defined as x1 = β, x2 = r.

A 2 DOF nonlinear bicycle vehicle mathematical model [41] is adopted in this paper for its
bifurcation analysis is described in (2):

(β, r) = f(Fyf , Fyr) (2)

where, β is the vehicle sideslip angle, r is the yaw rate, Fy,i represents the front Fyf and the rear Fyr

lateral tire forces. The single track bicycle model [42] for vehicle body frame is described in (3) and
(4):
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∑
Fy = mVx(β̇ + r) = Fyfcos(δ) + Fyr (3)∑
Mz = Iz ṙ = lfFyfcos(δ)− lrFyr (4)

where, m is the mass of the vehicle, Vx is the longitudinal velocity at centre of gravity (CG), δ is the
steering angle, Iz is the yaw moment of inertia, lf is the distance between the front axle and CG, lr is
the distance between the rear axle and CG. The front and rear tire forces are given by Magic formula
described in (5) as:

Fy,i = µDsin
{
Ctan−1

[
Bαi − E

(
Bαi − tan−1(Bαi)

)]}
(5)

where, µ is the friction coefficient and B, C, D, E are the tire coefficients obtained from [34] and the
values are shown in Table 1. αf and αr are the front and rear tire slip angles defined by the (6) and
(7):

αf = β +
lfr

Vx
− δ (6)

αr = β − lrr

Vx
(7)

The nonlinear relationship between the tire cornering force and the slip angle is shown in Fig. 2.
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Fig. 2. Lateral forces Vs. tire slip angles

Table 1. Coefficients of tire model

Tire Friction Coefficient (µ) B C D E
Front µ = 0.3 11.275 1.56 -2574.7 -1.9990
Rear µ = 0.3 18.631 1.56 -1749.7 -1.7908

Equations (3) and (4) are represented in (1) by utilizing the (5), and are defined in (11) and (12):

β̇ =
Fyfcos(δ) + Fyr

mVx
− r (8)

ṙ =
lfFyfcos(δ)− lrFyr

Iz
(9)
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Equations (11) and (12), are utilized to find the equilibrium points and for the stability analysis.

2.2. Equilibrium Points

For the phase trajectories of the states x1(β), x2(r) plane, (11) and (12) are rewritten in a com-
pact matrix form in (10) as:

[
ẋ1
ẋ2

]
=

[
f1(x1, x2, u)
f2(x1, x2, u)

]
(10)

where,

f1 = β̇ =
Fyfcos(δ) + Fyr

mVx
− r (11)

f2 = ṙ =
lfFyfcos(δ)− lrFyr

Iz
(12)

The values of phase are represented by x and the velocity vector at that point is represented by ẋ.
Equation (10) is written in the form mentioned in (13) as:

[
ẋ1
ẋ2

]
=

[
f1(x1, x2, u)
f2(x1, x2, u)

]
=

[
0
0

]
(13)

Equation (13) is solved to get the values of x∗1 and x∗2. The obtained values are the equilibrium
point (x∗1, x

∗
2) of the vehicle model is defined as the point at which the rate of change of the state

variable is zero. It may also be defined as a steady state condition at which the system states does not
change.

2.3. Phase Plane Analysis

The movement of the points (values of state variables) on the 2 dimensional (2D) plot of state
variables generates the phase trajectory. This plot is known as phase plane plot. The 2 dimensional
phase plot is limited to the selection of 2 states of the vehicle. To observe the stability of lateral
dynamics, generally the yaw rate r and sideslip angle β are plotted as the 2D planes. The trajectories
show the transitions of the different values of the states obtained. Theses trajectories on the plane
may converge towards or diverge away from equilibrium point. The equilibrium points are stable or
unstable depending on whether the trajectories are converging and diverging nature respectively.

The local stability of the nonlinear system is defined by linearising the model. Linearisation is
done by calculating a square matrix known as Jacobian matrix. The Jacobian matrix of the nonlin-
ear system is calculated at the equilibrium points. The above Jacobian matrix is calculated at the
equilibrium point (x∗1, x

∗
2) to obtain the eigenvalues. Equation (14) describes the Jacobian matrix as:

J =

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
(14)

The matrix J obtained at (x∗1, x
∗
2) is the constant matrix. By applying the characteristics equation

|J − λI| = 0, two roots λ1, λ2 are obtained. These roots are the eigenvalues of (x∗1, x
∗
2). If the

eigenvalues obtained are negative, then the equilibrium points are stable and if the eigenvalues are
positive then the equilibrium points are unstable.
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2.4. Bifurcation Theory

The topological structure of the phase plane obtained varies with the change in the control param-
eters under consideration. Particularly, the equilibrium point will appear or disappear, thus resulting
in a change in the stability of the system. The phenomenon of qualitative change in dynamics is
known as bifurcation. The point at which stability changes is called a bifurcation point. To analyze
the type of bifurcation exists in the nonlinear model, the variation in the control parameter is done.

A Hopf bifurcation (HB) is encountered when there is variation in the control parameter, the
generated complex conjugate eigenvalue crosses the imaginary axis and enters into the right half of
the complex plain [43]. The sign of the real part of the eigenvalue changes from negative to positive.
The type of HB is either supercritical or subcritical depending on how the limit cycle interacts with
the equilibrium point. The presence of unstable limit cycles prior to the bifurcation (inside the stable
region) makes it subcritical. When the unstable limit cycle emerges from the subcritical Hopf point,
the system becomes unstable because perturbations with larger amplitudes than the amplitude of the
unstable limit cycle grows. The unstable limit cycle repels the small perturbation, while the stable
fixed point attracts it. Therefore, a subcritical bifurcation is hard and dangerous in nature. If the limit
cycle is stable in the unstable region after the bifurcation is supercritical. Further, if the First Lyapnouv
Coefficient (FLC) is positive, then it is a subcritical Hopf and for negative it is a supercritical Hopf
bifurcation [44], [45].

Bifurcation analysis plays a vital role in the nonlinear vehicle dynamics to assess the stable region
of driving. The presence of bifurcations in the vehicle models results in the instability of the vehicle.
The vehicle instability is caused by a saddle point. This is a point is an unstable equilibrium point.
A vehicle in straight ahead running can cause the bifurcation when speed exceeds the limit speed,
which can lead to vehicle instability bifurcation [46], [47]. Using multibody dynamics simulation
software that enables to use the highly nonlinear dynamic elements, stable and saddle equilibrium
points are shown between the β and wheel angular velocity ω. A spinning behaviour of the vehicle
occurs if only a unstable equilibrium point exists for the set of bifurcation parameter value and can
be mathematically analysed as a saddle node bifurcation [48]. The vehicle speed, tire-road friction
condition, and steering angle varies the saddle points in the phase plane [11].

3. Simulation Results and Discussions

The values of the parameters utilized for the simulation purpose is listed in Table 2. Utilizing the
MATLAB/Simulink platform, the phase trajectories plot of the lateral dynamics model for different
initial conditions are obtained. The vehicle dynamics while driving change dynamically on slippery
or wet surfaces for higher steering angle and longitudinal velocity. This may lead the vehicle into a
region of instability. Therefore, a driving stability region must be defined for a given set of vehicle
parameters for control and stability.

Table 2. Vehicle parameters

Vehicle Paramters Values
Mass (m) 1650 kg

Distance of CG from Front Axle lf 1.16 m
Distance of CG from Rear Axle lr 1.9 m

Yaw Moment of Inertia Iz 2280 kg/m2

This paper focuses on the study of a 2 DOF nonlinear vehicle model travelling with a combina-
tion of different longitudinal velocities on low friction coefficient roads for a wide range of steering
angles (±0.2 rad.). Considering the assumptions made to develop the bicycle model, the stability
analysis of the model is confined to the lateral dynamics in this paper. Without these assumptions
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more number of dynamics can be included in modelling. Doing so, the phase plane analysis can
be done between lateral, longitudinal, yaw and vertical dynamics. The behaviour of the vehicle for
clockwise and anti-clockwise rotation of the steering is similar with a difference of polarity. The
anti-clockwise rotation of steering is taken as a negative value. The objective is to anaylze the sta-
bility behaviour of a nonlinear vehicle model utilizing phase plane and bifurcation analysis. For the
purpose of simulation, the road friction coefficient is taken as a low constant value rather than a con-
tinuous changing variable. Similarly, the values of vehicle parameters are taken as a constant values
which may vary in a real vehicle. The validation of the assumptions made while developing model
for simulation can be performed by utilizing the vehicle simulators including Carsim.

3.1. Phase Trajectories Analysis

Phase space analysis is utilized to show the equilibrium point bifurcation characteristics for the
control parameters opted as steering angle and longitudinal velocity. The phase trajectory between
(β− r) plane for low friction coefficient is drawn in MATLAB for different combinations of steering
angle and longitudinal velocity. In Fig. 3a, the phase trajectories are drawn for Vx = 10 m/s and for
different δ = −0.02,−0.06,−0.09 rads. The trajectories are repelled away from an unstable equilib-
rium point depicted by the red dot. The point at which the trajectories are attracted is represented by
a green dot, thus it is a stable equilibrium point. The presence of a stable equilibrium represents that,
the model will converge to the specific values of state even after disturbance. The system has three
equilibrium points for the given set of parameters, out of which one is a stable equilibrium (stable
node) point at [−0.0001,−0.057] with a negative eigenvalue and two others are unstable equilibrium
points (saddle) at [−0.095, 0.215], [−0.065,−0.225].
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Fig. 3. Phase trajectories at different steering angles for µ = 0.3, Vx = 10m/s

When the steering angle is changed from δ = −0.02 rad to −0.09 rad, the stable and unstable
equilibrium points moved towards each other and disappears. From the Figs. 3b and 3c, it can be
found that, for less velocity, the disappearance of saddle and node occurs at δ = −0.09. When the
longitudinal velocity is increased to 20 m/s and the steering angle δ = −0.02, it is found that the stable
node at [0.0154,−0.0714] and saddle point at [0.06,−0.14] comes closer, which can be observed after
comparing Figs. 3a and 4a. A further increase in steering angle, there is the disappearance of saddle
and node as seen in the Fig. 4b. In Fig. 4c, the existence of an unstable limit cycle is found at steering
angle δ = −0.12 rad. When the Vx is increased to 30 m/s and 40 m/s, it is found that the saddle and
node point becomes more closer at δ = −0.02 rad. and −0.01 rad. as depicted in Figs. 5a and 6a
respectivley. Figs. 5b and 6b show that the saddle and node points are already been disappeared. A
further increase in δ = -0.11 rad. at Vx= 30 m/s and Vx = 40 m/s, it is seen that the trajectories are
diverging away representing an unstable limit cycle as shown in Figs. 5c and 6c. Table 3 shows the
trajectory appearances for different combinations of control parameters. From the stable it is seen
that, saddle and node points disappears at lower steering angle as the longitudinal velocity increases.
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Fig. 4. Phase trajectories at different steering angles for µ = 0.3, Vx = 20m/s
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Fig. 5. Phase trajectories at different steering angles for µ = 0.3, Vx = 30m/s
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Fig. 6. Phase trajectories at different steering angles for µ = 0.3, Vx = 40m/s

3.2. Bifurcation Analysis

For the bifurcation analysis, Matcont/Matlab is utilized to observe the type of bifurcation exists
in the model based on the change in the bifurcation parameter. Matcont is a graphical Matlab software
package. It is utilized to find the equilibrium states, limit points, Hopf points, limit cycles, and fold
bifurcation points of limit cycles. Following are the steps involved to plot the bifurcation diagrams in
Matcont.

• To utilize the Matcont, the file directory of the Matcont folder must be selected in the command
window.

• In the Matcont window, choose select >> system >> New.
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Table 3. Movement of equilibrium points

Vx (m/s) δ (rad) Trajectories Appearance
−0.02 St. and Unst. Eq. Pts. Appear

10 −0.06 St. and Unst. Eq. Pts. Moved Near
−0.09 St. and Unst. Eq. Pts. Disappears
−0.02 St. and Unst. Eq. Pts. Appears Near

20 −0.06 St. and Unst. Eq. Pts. Disappears
−0.12 Spiral Out
−0.02 St. and Unst. Eq. Pts. Appear

30 −0.06 St. and Unst. Eq. Pts. Disappears
−0.11 Spiral Out
−0.01 St. and Unst. Eq. Pts. Appears

40 −0.02 St. and Unst. Eq. Pts. Disappears
−0.09 Spiral Out

St. and Unst. Eq. Pts.: Stable and Unstable Equilibrium Points respectively

• Define name, coordinates as yaw rate and sideslip angle, parameters involved in the modelling.
Then declare the model equations in the space provided.

• After the system name is loaded, choose Type >> initial point >> point. In the starter window,
enter any random values of the coordinates.

• Goto window >> graphic 2D plot >> change Abscissa to time and ordinate to one of the
coordinates.

• To obtain equilibrium point Choose the Select >> Initial point >> Last point.
• To select the last point as equilibrium point choose Type >> Initial point >> Equilibrium .
• Select the parameter to be the bifurcation parameter in the starter window.
• Change the Abscissa in the plot window to the selected bifurcation parameter.
• In the numeric window, select window >> layout >> eigenvalues.
• Select compute to observe the trajectory in the 2D plot window and the respective eigenvalues

in the numeric window.
• The plot will start from the equilibrium point of the ordinate and pause at the limit point (LP).

Before the LP the real part of the eigenvalues is negative. At the LP the real part of the eigen-
values is zero and after resuming the plot, the real part of the eigenvalues becomes positive.
The LP point denotes the bifurcation point.

For the low friction coefficient or wet surface road conditions, different combinations of steering
angle and longitudinal velocity are chosen as initial points to analyze the nature of bifurcation that
exists in the vehicle during motion. The bifurcation diagrams of the vehicle lateral dynamics for the
front steering angle and longitudinal velocity are obtained for the different equilibrium points. The
bifurcation diagrams with respect to steering angle and longitudinal velocity as bifurcation parameters
are obtained in Matcont and shown in Figs. 7 and 8 respectively. As in both Figs. there are presence
of limit points, so it denotes that the model has undergone a saddle node bifurcation. The solid
line represents the stable region as the eigenvalues of the states are negative for the specific range
of steering angle. The dashed line represents the unstable region because the eigenvalues becomes
positive. Figs. 7a and 7b show the bifurcation diagrams of the sideslip angle and yaw rate with respect
to the steering angle at different initial points of longitudinal velocity. From the Figs. it is seen that,
as the Vx is increased from 10 m/s to 40 m/s, the stable range of steering angle decreases. It is also
observed that, the stable region of sideslip angle and yaw rate increases and decreases respectively.
The bifurcation diagrams of sideslip angle and yaw rate with respect to longitudinal velocity for
different initial points of steering angle are shown in Figs. 8a and 8b. From the Figs it can be seen
that, as the steering angle increases, the the maximum stable longitudinal velocity and sideslip angle
decreases. The stable yaw rate is less for lower steering angle and the maximum stable longitudinal
velocity increases.
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Fig. 7. Saddle node bifurcation for β and r Vs δ
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Fig. 8. Saddle node bifurcation for β and r Vs Vx

Table 4 shows the bifurcation points of steering angles at different equilibrium points of state
variables β and r considering different initial points of longitudinal velocity. The data presented in
the Table 4 is obtained from Fig. 7. From the table, it can be observed that as the Vx increases, the
stable range of δ bifurcation points decrease from ± 0.0812 rad. to ± 0.019 rad. Table 5 shows the
bifurcation points of state variables β and r with respect to Vx. The data shown in the Table 5 is
obtained from Fig. 8. It is seen that, as the steering angle increases, the bifurcation occurs at lower
Vx. The maximum allowable stable longitudinal velocity decreases as δ increases. Based on the
discussion, a stability region of control input parameters (bifurcation parameters) is formulated and
shown in Fig. 9. This figure shows the stability region for the saddle node bifurcation analysis.

The steering angle ranges between ±0.08 rad. with longitudinal velocity up to 40 m/s. It can
be found that the stability region of longitudinal velocity decreases with the increase in steering
angle. Therefore, for a stable operation of the model, the steering angle and longitudinal velocity are
inversely proportional. A point in stable region in Fig. 9 corresponds to the solid lines of sideslip
angle and yaw rate represented in Figs. 7 and 8 as the eigenvalues becomes negative. Similarly, a
point in the unstable region in Fig. 9 corresponds to the dashed lines of sideslip angle and yaw rate
represented in Figs. 7 and 8 as the eigenvalues becomes positive.

From Figs. 4c, 5c, and 6c, it is observed that, if the steering angle is increased beyond −0.08 rad
and the longitudinal velocity is increased to 20 m/s and above, a limit cycle starts to appear. This is due
to the fact that the eigenvalues comprise of complex conjugate part. To analyze the type of bifurcation
that exists beyond −0.08 rad, the initial value of the steering angle is set at −0.1 rad value and different
longitudinal velocities starting from 20 m/s are utilized. Fig. 10 depicts the Hopf bifurcation diagram
wherein, the solid line represents the stable region and the dashed line represents the unstable region
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Table 4. Bifurcation points for β, r vs δ

Initial Points Equilibrium Points Bifurcation Points
Vx(m/s) (β, r) δ (rad.)

10 (−0.00214,−0.11451) ± 0.0812
20 (0.0338,−0.1507) ± 0.031
30 (0.0509,−0.0982) ± 0.022
40 (0.0569,−0.0744) ± 0.019

Table 5. Bifurcation points for β, r vs Vx

Initial Points Equilibrium Points Bifurcation Points
δ (rad.) (β, r) Vx(m/s)

−0.02 (−0.00214,−0.11451) 20.5
−0.03 (0.0338,−0.1507) 16
−0.04 (0.0509,−0.0982) 13.6
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Fig. 10. Hopf bifurcation for β and r Vs δ

based on the negative and positive eigenvalues obtained in the Matcont respectively. The bifurcation
diagrams for sideslip angle and yaw rate with respect to steering angle at different values of Vx

including 20 m/s, 30 m/s, and 40 m/s are shown in Figs. 10a and 10b. The limit point signifies the
point of stability transition and Hopf point signifies the existence of Hopf bifurcation. The appearance
of Hopf point prior to Limit point shows that, an unstable limit cycle exists in the stable region. The
magnitude of this Limit cycle depends on the values of Vx. This existence of unstable Limit cycle
is also verified by the nature of first Lyapnouv coefficient obtained in Matcont. In Matcont, the first
Lyapnouv coefficients for all three velocities are obtained as 1.463e02, 9.548e01, and 7.2114e01. The
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obtained coefficients are positive, resulting in the presence of subcritical Hopf bifurcation. From the
Table 6, it is found that, the Hopf point appeared to be in a stable region before the stability transition.
As the Vx increases, the transition of stability occurs at a lower steering angle and Hopf point moves
near to the bifurcation point.

Table 6. Hopf bifurcation points for β and r Vs δ

Initial Points Equilibrium Points Hopf Points Bifurcation Points
Vx (m/s) (β, r) (β, r, δ) δ (rad.)

20 (0.0609,−0.1239) (0.0443,−0.1238,−0.121) −0.11
30 (0.0624,−0.0831) (0.0498,−0.0825,−0.11) −0.101
40 (0.0608,−0.0623) (0.0517,−0.0619,−0.10) −0.098

The unstable limit cycles (diverging away from equilibrium point) for all three velocities are
represented in Fig. 11. This unstable nature of limit cycle is generated because the equilibrium point
is an unstable focus as the eigenvalues are complex conjugate with a positive real part. The increase
in the magnitude of the unstable limit cycle on sideslip angle β axis more in comparison to yaw rate
axis denotes that, if the Vx increases the β of the vehicle increase as shown in Figs. 11a, 11b and 11c.
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Fig. 11. Unstable limit cycle

The stability region is shown in Fig. 12 for all the three velocities, where, LP represents the
limit point and H represents the Hopf point. The subcritical region shown in the figure represents the
existence of an unstable limit cycle. The cyan colour line bifurcates the stable and unstable region of
the state variables (β, r) and the subcritical region is shown by the red dashed line. The green colour
line shows the different values of sideslip angle β and yaw rate r of different values of steering angle
δ and longitudinal velocity Vx. The region shown inside the red dotted line depicts the subcritical
region. It can be observed that the magnitude of this region is higher in sideslip angle and lower in
yaw rate. This signifies that, after the Hopf point is detected, the unstable limit cycle grows more
with respect to sideslip angle of the vehicle. The magnitude of subcritical region increases on sideslip
angle axis more in comparison to yaw rate axis with an increase in the value of Vx as shown in Figs.
12a, 12b and 12c.

The obtained subcritical Hopf bifurcation is also verified analytically by deriving the normal
form of the vehicle model in (11) and (12). The model shows Hopf bifurcation with respect to the
control parameter δ = −0.1 rads. To obtain the normal form of the model, a complex number in
cartesian form is introduced defined in (15).

v = rcos(β) + i(rsin(β)) (15)

where,
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Fig. 12. Stability region

r = |v| (16)

β = tan−1

{
i(v̄ − v)

v̄ + v

}
(17)

and deriving an equation for the dynamics of v. The equation is given as:

dv

dt
=

(
cos(β)

dr

dt
− rsin(β)

dβ

dt

)
+ i

(
sin(β)

dr

dt
+ rcos(β)

dβ

dt

)
(18)

For small angle approximation cos(θ) = 1, sin(θ) = θ and tan−1(θ) = θ. Therefore, (18) is
simplified and represented in (19).

dv

dt
=

(
dr

dt
− rβ

dβ

dt

)
+ i

(
β
dr

dt
+ r

dβ

dt

)
(19)

On substituting (11) and (12) in (19) and simplifying it, the equation obtained is mentioned below.

dv

dt
= 23.04δ + 18.92β − 5.32r + rβ(2.82β − 1.37δ + 0.93r) + i [β(23.04δ + 18.92β

−5.32r)− r(2.89β − 1.37δ + 0.93r)]
(20)

Again on substituting (16) in the (20) to obtain with respect of v. The equation is defined as:

dv

dt
= 23.04δ − 5.32|v| − 2.89|v|

[
v̄ − v

v̄ + v

]2
− 1.37δ|v|

[
i(v̄ − v)

v̄ + v

]
+ 0.93|v|2

[
i(v̄ − v)

v̄ + v

]
−23.04δ

[
v̄ − v

v̄ + v

]
+ 5.32|v|

[
v̄ − v

v̄ + v

]
+ 2.89|v|

[
v̄ − v

v̄ + v

]
+ i1.37δ|v| − i0.93|v|2

(21)

Simplifying (21), the normal formal of the Hopf bifurcation at δ = −0.1 rads. for the vehicle model
defined in (11) and (12) is given by following (22).

dv

dt
=

[
1− (v̄ − v)

v̄ + v

]
[23.04 + i1.37δ|v|] +

[
1− (v̄ − v)

v̄ + v

]
[−5.32|v|

+2.89|v|
[
i(v̄ − v)

v̄ + v

]
+ i0.93|v|2

] (22)
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Equation (22) represents that the Hopf bifurcation is subcritical type as the coefficient of the |v|2 is
positive.

A comparison table is formulated to show the values of longitudinal velocity and steering angle
utilized in the previous work to explore the type of bifurcation exists in the nonlinear model. Table 7
show the comparative analysis between the analysis performed in this paper and the work available
in literature [27], [34] and [37] respectively. It can be observed that presence of saddle node and
subcritical Hopf bifurcation is found for lower and higher values of control parameters respectively.

Table 7. Comparison table

Vx (m/s) δ (rad.) Type of Bifurcation observed
Vx = 10, 20, 30 upto 0.02 Saddle Node [27]

Vx = 10, 20, 30, 40 upto 0.04 Saddle Node [34]
Vx = 33 0.01 Saddle Node [37]

Vx = 10, 20, 30, 40 upto 0.11 Saddle Node and Subcritical Hopf [proposed analysis]

In the phase plane analysis, the phase trajectories are obtained for different values of steering
angle and longitudinal velocity. It is observed that when the steering angle is increased from 0 rad., a
saddle node bifurcation occurs. A further increase reveals that, an unstable limit cycle is present. The
disappearance of saddle and node points occurs at lower values of steering angle as the longitudinal
velocity increases. This implies that the saddle node bifurcation is occurring more frequently. The
presence of saddle node bifurcation reveals a spinning behaviour of the vehicle that leads to the
instability of the vehicle. Therefore, a saddle node bifurcation (SNB) is present for low steering
angles. To analyze the nature of bifurcation that exists near the stability boundary, the value of the
control parameter is increased. As the control parameters including steering angle and longitudinal
velocity changes, the transition of stability of the vehicle occurs. This transition of stability is analysed
with the help of bifurcation theory. If the steering angle is increased at higher longitudinal velocity,
the presence of an unstable limit cycle is detected in the stable region. This results in the sliding
and spinning of the vehicle. This behaviour of the vehicle show the instability as the sideslip angle
increases drastically. In this paper, the road friction coefficient is considered as 0.3 representing a wet
or slippery condition. The information of this friction is pre-assumed instead of estimating.

4. Conclusion

The work performed in the paper provide details about the stability analysis of a nonlinear ve-
hicle model utilizing a phase plane and bifurcation theory for different values of steering angle and
longitudinal velocity. The aim of selection of different values is to reflect the real vehicle driving
scenario. It is important to know the behaviour of a vehicle on the wet road surface to avoid the ac-
cidents, therefore, a low friction coefficient is opted. The Matcont/Matlab software tool is utilized as
it is much flexible to declare the mathematical equations and for the analysis of the physical models.
From the stability analysis, the major findings are summarized as follows:

• For lower steering angle values (δ ≤ ± 0.8 rad) at different longitudinal velocities Vx, a saddle
node bifurcation exists. This bifurcation found to be occur more frequently for higher values
of longitudinal velocity as one unstable equilibrium point and stable equilibrium point moves
closer to each other faster. It is found that, stability region narrows down for higher values of
longitudinal velocity with lower values steering angle.

• The spin behaviour of the vehicle is found to be occur for a saddle node bifurcation (SNB) if
the values of longitudinal velocity is increased on a wet surface road. This results in the yaw
instability and the driver will lose control on braking the vehicle.

• For the increased values of steering angle and longitudinal velocity beyond a specific value of
(±0.08 rad) and (20 m/s) respectively, a Hopf point is detected before the limit point. Based
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on the Lyapnouv First Coefficient obtained in Matcont, it is observed that the Hopf bifurcation
is subcritical in nature. Therefore, an unstable limit cycle is present in the stable region. The
derived analytical result obtained confirms the subcritical type of Hopf bifurcation.

• The presence of unstable limit cycle in the stable region results in the increase in sideslip angle
with an increase in the values of longitudinal velocity. The increase in β results in the sliding of
the vehicle during cornering. It is found that, the subcritical region increases with the increase
in the values of the longitudinal velocity. Therefore, for higher values of control parameters,
inside the stable region, a global stability boundary exists that needs to be considered during
controller design. Due to this subcritical region, the driver will lose control in steering the
vehicle and will result in accident for the increased values of control parameters.

The future scope of work includes finding the global stability region inside the stable region and
designing controller based on the stability region obtained. The design of bifurcation controller can
eliminate the existence of SNB and the unstable limit cycle in the stable region such to control the
vehicle and to avoid the accidents. The estimation techniques can be employed to provide the infor-
mation about the road condition to the vehicle prior. Getting the prior information about road, the
driver assistance system can be alert so that an increase steering angle and longitudinal velocity can
be avoided for the vehicle and passenger safety.
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