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1. Introduction  

Pipelines are a significant method for transporting petroleum products, including fossil fuels, 

gases, chemicals, and other important hydrocarbon fluids that contribute to the nation's economy [1]. 

Research has shown that oil and gas pipeline networks are the most cost-effective and secure method 

for moving crude oils, meeting a significant need for effectiveness and dependability [2], [3]. For 

example, the projected fatalities from accidents per ton-mile of transported petroleum products are 

87%, 4%, and 2.7% higher when using trucks, ships, and trains, respectively, compared to pipelines 

[4]. Transporting hazardous chemicals over extensive pipes has been a common practice worldwide 

in recent decades, leading to a higher risk of severe incidents caused by pipeline breakdowns [5]. 

Deliberate actions (such as vandalism) or accidental incidents (such as device or material failure and 

corrosion) can cause failures [6], [7], leading to pipeline failure and irreversible consequences like 

financial losses and severe environmental pollution, especially if the leakage is not promptly detected 

[8], [9]. 
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 The oil industry plays a crucial role in Iraq's economy. There's a growing 

need for technologies that can quickly detect leaks in oil pipelines because 

leaks can have serious ramifications, including monetary losses, 

endangerment to public safety, environmental degradation, and resource 

waste. Advances in technology and software have made it possible to detect 

leaks. Current approaches often require manual extraction of features, 

which can be slow and inefficient. This paper presents a new method that 

proposes using convolutional neural networks (CNNs) for automatic 

feature extraction. The Iraqi Ministry of Oil, specifically the Basra Oil 

Company, provided the dataset, such as total distance (km), pressure (bar), 

and flow rate (STB/d). We split the data into training (70%) and testing 

(30%) sets. then we calculate metrics such as confusion matrices, accuracy, 

precision, recall, and F-score to evaluate performance and calculate errors 

from the regression analysis (root mean square error, root mean absolute 

error, and relative error). Our contribution to this work is to use 1DCNN to 

identify leaks, pinpoint their location, and even predict the amount of 

spilled oil, unlike other research that only uses it to evaluate the presence 

or absence of a leak only. Additionally, we've created a user-friendly 

interface for the system. Finally, compare the proposed approach with 

conventional and alternative methods to show its efficiency. In the future, 

we plan to expand the system to assess pipeline corrosion and predict its 

remaining lifespan. 
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The economic impact of pipeline leakages is substantial [10]. Over the last 30 years, pipeline 

incidents in the USA have resulted in about $7 billion in property damage, more than 500 fatalities, 

and thousands of injuries [11]. An example is the pipeline explosion in San Bruno, California, USA, 

on September 6, 2010, which resulted in the deaths of eight people and injuries to over fifty more [11]. 

On July 26, 2010, a pipeline fault in Michigan, USA, resulted in about 840,000 gallons of crude oil 

leaking into the Kalamazoo River, causing an estimated $800 million in damages [11]. There are 

several reasons for pipeline degradation. Fig. 1 displays a pie chart depicting the primary reasons for 

pipeline failures, such as pipeline corrosion, human carelessness, installation and construction 

problems, manufacturing issues, and external influences [12]. 

 

Fig. 1. displays a pie chart showing the statistics of pipeline failure origins. Information is acquired in 

reference [12] 

Given these facts, it is difficult to completely prevent the occurrence of pipeline leaks due to the 

wide range of potential failure causes. It is essential to monitor pipelines to promptly discover and 

forecast leaks, enabling swift actions to prevent oil spills and ensure adequate pipeline upkeep, thereby 

minimizing the societal repercussions of oil spillage. Therefore, it is feasible to decrease the rate of 

loss, injuries, and other significant societal and environmental impacts caused by pipeline failures. 

Various pipeline leak detection technologies have been suggested during the last few decades, 

using diverse functioning principles and methodologies. Current methods for detecting leaks include 

acoustic emission [13]-[15], fiber optic sensors [16]-[18], ground penetration radar [19], [20], negative 

pressure wave [21]-[23], pressure point analysis [24]-[26], dynamic modeling [27], [28], vapor 

sampling, infrared thermal imaging, digital signal processing, and mass-volume balance [29]-[33]. 

These approaches have been categorized using different frameworks. The authors have categorized 

them into two groups: hardware and software-based techniques [34], [35]. Efforts have been made to 

categorize these approaches based on technical aspects [36]-[39], resulting in the categorization of 

leakage detection systems into three main groups: internal, non-technical or non-continuous, and 

external methods. Fig. 2 displays a comprehensive categorization of various strategies. Man-made 

sensing technologies are used in the external approach to identify issues outside pipes. The biological 

technique uses trained animals or experienced workers to identify leaks using visual, aural, and 

olfactory sensors. The inside approach utilizes software-based technologies that use advanced 

computational algorithms together with sensors to monitor the internal pipeline environment for 

detection purposes. Remote monitoring may be accomplished by deploying cameras or sensing 

equipment to specific places using methods such as smart pigging, helicopters, autonomous 

underwater vehicles (AUVs), drones, or sensor networks. 

One of the software-based technologies is the convolutional neural network (CNN), an 

extensively used technique in pattern recognition that will be used to identify various aperture leaks. 

CNN has strong generalization and accuracy in multi-classification tasks. One-dimensional 

Convolutional Neural Networks (1DCNN) provide clear benefits for processing one-dimensional data 

signals [40]-[42]. CNN accepts datasets as input, eliminating the need for subjective and difficult data 
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feature extraction and minimizing human involvement in feature extraction and learning. CNN is used 

for feature extraction in pipeline leaks due to its proven strong performance in machine learning for 

object identification, fault diagnosis, and similar activities. 

 

Fig. 2. Flowchart depicting several methods for detecting pipeline leaks 

CNNs is a powerful tool for automatically extracting features from an input dataset. This study, 

however, aims to detect leaks by monitoring pressure drop and flow rate in oil-bearing pipelines, with 

a special emphasis on accurate leak detection and location, effectively developing and training a one-

dimensional convolutional neural network (1DCNN) for this purpose. The data needed for this 

algorithm comes from real sources, like the Iraqi Ministry of Oil. The dataset was improved by using 

PIPESIM, a program that simulates fluids inside oil pipelines. Several leakage scenarios were created 

on purpose, and then all of the system's evaluation criteria were worked out. Regression predicted the 

leak location, estimated the fluid passing through the leak orifice, and calculated all error rates. After 

all the classification and regression of our model, we finally designed a graphical user interface that 

is user-friendly. 

The contributions of this paper are summarized as follows: Oil and gas pipelines (OGPs) are a 

secure and cost-effective means of transporting petroleum products globally, although they encounter 

obstacles due to risk considerations. The hazards involved include safety, security, design, 

construction, and operational risks caused by third-party disruption (TPD) and acts of terrorism, 

especially in developing and unstable nations such as Iraq. The lack of understanding of how to handle 

these risks, as well as the limited availability of historical data on pipeline failures, are impeding Open 

Government Partnership (OGP) risk management solutions.  

And as a result of developments in the field of artificial intelligence in all activities. Outlined 

below are the contributions of this study: 
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1. Reducing maintenance costs in the industry and minimizing the impact of oil spills on the 

environment requires an intelligent method to locate pipeline leaks and accurately estimate their 

extent. 

2. Non-destructive techniques, such as using pressure and flow sensor data in conjunction with a 

deep learning technique, can be used to determine if there is a leak in an oil pipeline and locate 

it. 

3. The proposed approach uses the input sensor data to accurately detect and pinpoint the leak 

location. 

4. The deep learning model's two-fold decline curve was verified using the data collected from the 

breach. 

Here is the organization of the remaining sections: Section 2 present the theoretical background, 

and this section will provide clarification on three topics: Deep Learning, CNN, and 1DCNN, methods 

for detecting leaks in pipelines, and the most critical parameters to be calculated.  Section 3 displays 

all mathematical models and governing equations associated with pipeline leak detection. Section 4 

present the method that will be used to detect and locate pipeline leaks, including the data collection 

process as well as its processing within the convolutional neural network and system evaluations based 

on the parameter outputs. Section 5 we present all operations were carried out for both classification 

and regression to classify the presence and absence of a leak, as well as determining the location of 

the leak and the amount of leaked fluid and displaying all the mathematical equations on the basis of 

which these operations are evaluated. Section 6 In this part, the results for both classification and 

regression were presented, as well as the model graphical interface for the designed application. 

Section 7 In this section, all the limitations of the work were presented, then compared with other 

works, and all the challenges that were faced during the implementation were discussed, as well as 

special suggestions for future work. 

2. Theoretical Background 

This section briefly discusses deep learning, the convolution neural network (CNN) layers, and 

one-dimensional convolutional neural networks (1D CNN) with all evaluation parameters that will be 

collected. 

2.1. Deep Learning 

Artificial intelligence (AI) has gained significant popularity in the past ten years, with numerous 

papers in technology and non-technology magazines discussing machine learning (ML), deep learning 

(DL), and AI. [43]-[48] Confusion persists over AI, ML, and DL. One can closely connect the terms 

but cannot use them interchangeably. In 1956, a group of computer scientists suggested that computers 

could imitate human thinking and reasoning by accurately characterizing all aspects of intelligence to 

create a mimicking system. [49] They labeled this principle “artificial intelligence.” Artificial 

intelligence aims to automate cognitive processes traditionally performed by humans, utilizing 

machine learning and deep learning as specialized techniques to accomplish this goal. They fall under 

the domain of AI, as depicted in Fig. 3.  

AI encompasses methodologies that do not require any type of “learning.” Symbolic AI, 

specifically, involves the explicit creation of rules for all potential situations inside a specific domain, 

known as hard coding. Humans create these rules using their prior knowledge of the particular subject 

and task. If someone were to develop an algorithm to control an office’s room temperature, they would 

likely be aware of the comfortable temperature range for human work and would program the system 

to cool the room if temperatures exceeded a certain threshold and heat it if they fell below another 

threshold. Symbolic AI excels at solving well-defined logical issues but struggles with situations that 

demand advanced pattern recognition, like speech recognition or image categorization. ML and DL 

algorithms excel at handling more intricate jobs.  
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Deep learning makes it easier for computational models to collect and visualize data in a way 

that mimics how the human brain processes and interprets multimodal inputs [50]. The CNN method, 

discussed below, is a type of deep learning method. 

 

Fig. 3. Artificial intelligent, machine & deep learning 

2.2. Convolution Neural Network (CNN) 

CNN operates on a similar premise to the organic visual system [51]. Neurons in the brain of the 

biological visual system primarily focus on local data in the picture because they only receive 

stimulation in specific regions. The brain of vision creates the overall sense of the picture by 

processing the local information from each cell. CNN’s distinctive architecture helps to reduce the 

computational cost of the neural network’s overfitting and classification. The final output layer, an 

input layer, a fully connected layer (FCL), a pooling layer (PL), and a convolutional layer (CL) make 

up the CNN architecture, as shown in Fig. 4. 

 

Fig. 4. CNN with four layer 

The convolutional layer of the CNN retrieves high-level abstract features from the input data. An 

activation function with different weights and biases further enhances the abstract characteristics of 

the convolutional layer. CNN’s convolutional process is represented in Equation (1). 

 

𝐶𝑙
𝑗

= 𝑓 (∑  𝐶𝑖
𝑗−1

∗ 𝑤𝑖𝑙
𝑗

𝑖∈𝑃𝑛

+ 𝑏𝑙
𝑗
) (1) 

Where 𝑙: the number of layers; 𝑗 represent component; 𝑤: represent weight; 𝑏: represent basis. 

Adding a pooling layer to the CNN makes the features it gets from the convolutional layer even better, 

since discriminant features are very important for a classifier to correctly classify something. In this 

study, we employ max-pooling to eliminate unnecessary data. We can use the following formula to 

mathematically express the maximum pooling procedure, which is represented in Equation (2). 
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 𝐶𝑙
𝑗

= 𝑓(𝑤𝑙
𝑗

∗ max(𝐶𝑖
𝑗−1

) + 𝑏𝑙
𝑗
) (2) 

Where 𝐶𝑙
𝑗
represents the maximum pooling operation. This work employs the modified linear unit 

as an activation function to enhance the linear discriminant of the features. CNN employs numerous 

convolutional and pooling layers to improve its ability to take local data and extract it from the input. 

After extracting the latent information from the convolutional and pooling layers, CNN classifies the 

data into the appropriate classifications. For this, CNN makes use of a completely connected layer. A 

fully connected layer classifies the latent features derived from the convolution kernel [52] and is 

represented in Equation (3). 

 
𝑓𝐶𝑗+1 = (∑ 𝑤𝑖𝑙

𝑗
𝑎𝑗(𝑖) + 𝑏𝑙

𝑗

𝑛

𝑖=1

 ) (3) 

We used one dimension of CNN in this study to identify pipeline leaks. CNN is used for 

extracting features in the leak detection method. This is due to CNN’s demonstrated proficiency in 

machine vision, object recognition, fault identification, and other related tasks. In contrast to 2DCNNs, 

which typically handle two-dimensional images, the 1DCNN model in this work is used to extract 

features from one-dimensional time series data. 

2.3. 1D Convolutional Neural Networks (1D CNNs) 

The conventional deep CNNs presented in the previous section are designed to operate 

exclusively on 2D data, such as images and videos. This is why they are often referred to as ‘‘2D 

CNNs.” As an alternative, a modified version of 2D CNNs called 1D Convolutional Neural Networks 

(1D CNNs) has recently been developed [53]-[62]. These studies have shown that for certain 

applications, 1D CNNs are advantageous and thus preferable to their 2D counterparts in dealing with 

1D signals due to the following reasons. This preference is based on the following reasons: 

1. There is a notable contrast in computational complexity between 1D and 2D convolutions. 

Specifically, convolving an image with N*N dimensions using a K*K kernel results in a 

computational complexity of approximately O~(N2K2) for 2D convolution and approximately 

O~(NK) for 1D convolution with the same dimensions. Under identical conditions, the 

computational complexity of a 1D CNN is notably lower than that of a 2D CNN. 

2. Recent studies show that 1D CNN applications typically use compact configurations with 1-2 

hidden CNN layers and networks with less than 10,000 parameters. In contrast, 2D CNN 

applications commonly use deep architectures with over 1 million parameters, often exceeding 

10 million. Shallow networks are easier to train and implement compared to deep networks. 

3. Training deep 2D CNNs typically necessitates specialized hardware configurations, such as 

cloud computing or GPU farms. CPU implementation on a regular computer is possible and 

quite quick for training small 1D CNNs with few hidden layers (e.g., 2 or less) and neurons 

(e.g., less than 50). 

4. Compact 1D CNNs are ideal for real-time and cost-effective applications, particularly on mobile 

or hand-held devices, because of their minimal processing demands [53]-[64]. 

2.4. Methods for Detecting Leaks in Pipelines 

From the points, the procedure for implementing 1DCNN will be used on the data set that was 

provided by the client and the simulation application: (a) a dataset was built with instances of all cases 

of the original dataset that was provided split between a training set and a validation set; (b) the training 

of the dataset was augmented by 1DCNN using Python and MATLAB for classification and 

regression; (c) then, after training, we calculated the mean squared error, root mean absolute error, 

mean absolute error, and relative error; I after that, we transformed this code into a user-friendly 

platform using App MATLAB Designer (a graphical user interface), enhancing accessibility and 

usability. 
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3. Mathematical Model 

Previous research stated that the lack of pipeline datasets is one of the main problems facing 

pipeline leak detection research. Researchers are unable to finance the acquisition of data from actual 

pipelines, and operators are unwilling to provide the datasets. Researchers used fictitious data for the 

transmission pipeline model due to financial constraints and operators' unwillingness to provide 

datasets [65]. Pipeline modeling and simulation are based on the transient pipeline flow model. The 

continuity, momentum, state, and energy equations are the basic formulas that govern this model [66]. 

The concept of mass conservation is at the heart of the continuity equation. It requires that the mass 

change rate inside a pipeline segment correspond to the mass flow variation entering and exiting that 

section. 

Governing equations. To model the pressure behavior induced by leaks in a pipeline system, the 

one-dimensional mechanistic homogeneous model proposed by Cazarez-Candia and Vásquez-Cruz 

(2005), was modified by adding a leak term on each conservation equation, similarly to other works 

(Emara-Shabaik et al., 2002, Kam, 2010). The suggested model assumes a pipe with a constant cross-

sectional area, adiabatic liquid flow, a straight pipe, and approximates the leak hole as a circle (Kam, 

2010). These assumptions are reflected in Equations (4) and (5). 

 𝜕𝜌

𝜕𝑡
=

𝜕𝜌𝜕𝑃

𝜕𝑃𝜕𝑡
=

1 𝜕𝑃

𝐶2𝜕𝑡
 (4) 

And 

 𝜕𝜌

𝜕𝑥
=

𝜕𝜌𝜕𝑃

𝜕𝑃𝜕𝑡
=

1 𝜕𝑃

𝐶2𝜕𝑥
 (5) 

Where (𝜌) is the liquid density, (𝑃) is the static pressure, (𝐶) is the speed of sound in the liquid 

phase, (𝑡) is the time coordinate, and (𝑥) is the spatial coordinate. The mathematical model is formed 

by mass and momentum conservation equations (6) and (7). 

 1 𝜕𝑃

𝐶2𝜕𝑡
+

𝑄 𝜕𝑃

𝐴𝐶2𝜕𝑥
+

𝜌 𝜕𝑄

𝐴 𝜕𝑥
= −Γ𝐿 (6) 

 𝑄 𝜕𝑃

𝐴𝐶2𝜕𝑡
+

𝜌 𝜕𝑄

𝐴 𝜕𝑡
+ (

𝑄2

𝐴 𝐶2
+ 1)

𝜕𝑃

𝜕𝑥
+ (Ψ)

2𝜌𝑄𝜕𝑄

𝐴2 𝜕𝑥
= −

𝜏𝑊𝑆

𝐴
− (Ψ)𝑉𝐿Γ𝐿 (7) 

Where (𝐴) is the pipe cross-section area, (Γ𝐿) =𝑀𝐿/𝐴𝑑𝑥  is the leak term, (𝑀𝐿) is the leak mass 

flow rate, (𝑄) is the one-dimensional flow rate, (𝑆) is the wet perimeter, (𝑉𝐿) is the velocity in the leak 

stream, and (𝜏𝑊) is the wall friction shear stress, which is defined as shown in Equation (8). 

 
𝜏𝑊 =

1

2
𝐹𝜌𝑉2 (8) 

Where (𝐹) is the Fanning friction factor. On the other hand, The Bernoulli equation calculates 

the pressure changes in a pipe caused by fluid flow. This equation can also predict potential locations 

of leakage in a pipe. Can be describe in Equation (9). 

 
𝑃1 +

1

2
𝜌𝑣1

2 + 𝜌𝑔ℎ1 + 𝑊1 = 𝑃2 +
1

2
𝜌𝑣2

2 + 𝜌𝑔ℎ2 + 𝑊2 (9) 

Where: (𝑃) represents the pressure, (𝜌) is the fluid density, (𝑣) is the fluid velocity, ( 𝑔) is the 

acceleration due to gravity, (ℎ) is the height of the fluid above a reference point, and (𝑊) represents 

the work done by external forces (e.g., pumps). In a pipeline system with a steady flow and a leak, 

this equation can be modified to account for the different factors affecting pressure, as shown in 

Equation (10). 
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𝑃1 +

1

2
𝜌𝑣1

2 + 𝜌𝑔ℎ1 + ℎ𝑓,1 + ℎ𝐿 = 𝑃2 +
1

2
𝜌𝑣2

2 + 𝜌𝑔ℎ2 + ℎ𝑓,2 (10) 

Where: (ℎ𝑓) represents the frictional head loss, accounting for energy dissipated due to pipe wall 

friction; (ℎ𝐿) represents the local head loss induced by the leak, accounting for the energy lost due to 

the leak. 

Also, insert a branch pipe of a certain diameter into the main pipeline to simulate leakage. The 

branch pipe can have a variable leakage rate, and the variable leakage rate allows checking for 

different types of leaks on the main pipeline. Fig. 5 provides a schematic representation of this type 

of pipe. This figure shows the distances D1 and D2 between the leak location and the upstream and 

downstream pressure sensors, respectively. The pressure sensors, S1 and S2, are I/P and O/P, 

respectively. The arrows' direction, which indicates the path from the pin to the outlet, represents fluid 

flow [67]. Fig. 6 shows the flow rate and pressure for leaking and non-leaking pipelines. And Equation 

(11) shows that. 

 

Fig. 5. Leak at distance (X) in the pipeline 

 

Fig. 6. Pipeline leak and no-leak 

 𝑃𝑖𝑛 =  𝑃𝑜𝑢𝑡 +  𝑃𝑙𝑒𝑎𝑘 +  𝑃𝑙𝑜𝑠𝑠 (11) 

Where 𝑃𝑙𝑜𝑠s:  Wax accumulation in the pipeline causes pressure loss (0 for new pipes). 𝑃𝑙𝑒𝑎𝑘: 

Pressure loss because of leak. D1: Leak point to pressure sensor distance upstream. D2: Leak point to 

pressure sensor distance downstream 

4. Method Pipeline Leakage Detection and Localization 

This paper used the 1DCNN model, which consists of two convolutional layers and three fully 

linked layers, excluding pooling layers. This model utilizes variations in leak pressure and flow rate 
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changes to identify various leak apertures. We trained CNN using data from both leak and no-leak 

scenarios to create and evaluate the pipeline leak identification model. Fig. 7 displays the suggested 

methodology flowchart for 1DCNN leak classification. 

 

Fig. 7. Flow chart of classification 

4.1. CNN Architecture Made 

We designed the modal CNN to be suitable for learning the relationship between parameter input 

and pipeline leak detection and localization. 

1. Input layer: In this layer, define the size of the data input. We have four columns and five rows, 

which represent one labeled set. 

2. Convolution layer: We use 16 filters of size 3x3 for the kernel to extract significant features. 

Values (weights) in the kernel of the convolutional layer convolve with the input data to generate 

feature maps. Empirical research has demonstrated that networks utilizing 3x3 filters typically 

perform various tasks. The widespread use of 3x3 filters in successful structures confirms their 

efficacy. Choosing a 3x3 filter size in convolutional layers provides a balance between obtaining 

local features, parameter efficiency, and getting optimal performance in various tasks. Padding 

the output dimensions to match the input dimensions. 

3. Relu layer: applies the activation function to the output of the convolution layer to make it non-

linear. 

4. The fully connected layer contains weights, biases, and neurons to establish connections 

between neurons in different layers. These layers are usually placed before the output layer and 

form the final layers of a CNN architecture. • This layer has a single neuron that generates a 

value indicating the predicted leak. 

5. Classification or Regression Layer: Calculates the error between the predicted and actual 

outputs. • Primarily used for regression assignments, such as predicting continuous values like 

pipeline leak location and the amount of leakage. 
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After the CNN architecture has been planned, we do the other requirements, as choosing the right 

location to conduct the study and collect real-time data is critical to the success of the research. Here 

are some points to consider when choosing the right location: 

1. Availability of historical data: Search for sites where historical data relevant to your study is 

available. This data can include historical records about environmental conditions, oil flow rates, 

pressure passing through pipes, etc. Access to this data provides a basis for analysis and 

comparison with results based on neural networks. 

2. Existing sensor infrastructure: sites that already have sensor networks (pressure sensors and 

flow sensors) should be identified. These sensors collect data related to variables of interest in 

the research, allowing you to collect the inputs needed to train and test your neural network 

models. 

3. Presence of main pipes or infrastructure: A location must be chosen that contains main pipes or 

important infrastructure related to the research application.  

4.2. Data Collection 

During the data collection phase, we faced the challenge that the client's data was insufficient, as 

most of it was for cases of no leakage in the conveyor pipeline. To address this limitation, we choose 

to use simulation software for oil pipelines, specifically PIPESIM 2022.2, a versatile multi-phase flow 

simulator designed for analyzing wells, flow lines, and pipeline systems, as well as surface equipment 

such as chokes, separators, pumps, and compressors. The fluid characteristics may be modeled using 

black-oil correlations or completely compositional methods. We have made sure to retain all 

parameters related to pipe and crude oil specifications that were also provided to us by the company’s 

laboratories. Table 1. shows all the parameters used in the simulation. 

Three points along the 10-km oil pipeline were selected to conduct simulations of oil spills at 

each of 2.5, 5, and 7.5 km. These simulations were conducted with consideration of all parameters 

related to the crude oil and piping characteristics specified in the chosen oil field. The simulation 

aimed to model and analyze various potential leakage scenarios, taking into account factors such as 

flow rates, pressures, fluid properties, piping conditions, and environmental variables. By simulating 

oil spills at these specific points along the pipe, we can evaluate response mechanisms, evaluate the 

effectiveness of leak detection systems, and improve emergency procedures to deal with such 

incidents. 

Table 1.  The parameters using in simulation 

Variables 

Parameters of pipeline Value Parameters of crude oil Value 

Inside diameter 15.25 in Watercut 0.25 % 

Wall thickness 0.375 in Gas specific gravity 0.6636 SCF/STB 

Roughness 0.0018 Water specific gravity 1.02 

Horizontal distance 8.202.1 ft API 28 dAPI 

U Value type Insulated Temperature (1st,2nd) (200,60) degF 

Heat transfer coefficient 0.2 Btu/(h.degF.ft2)  Viscosity(1st,2nd) (3.1342,273.7911) cP 

Inside film coefficient Include Oil specific heat capacity 0.45 Btu/(Ibm.degF) 

 

The flow gauge is placed between the valve and the pipe to calculate the rate of leakage. The 

PIPESIM program (version 2022.2, 64-bit) gathers pressure and flow rate data from the pipeline by 

adjusting parameters such as crude oil pressure, leak size, leak location, and the oil leakage flow rate. 

It produces precise data without any interference. Modifying the leak flow can classify the gathered 

data as either a significant or minor leak. Nevertheless, in real-world scenarios, there will always be 

some interference in the gathered data, including measurement noise and ambient noise. 

Furthermore, we selected different leak locations and compared them with real-life scenarios to 

strengthen the validity of our findings. We placed the data coming from the client, as well as those 
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obtained from the simulation program, in a csv file after rearranging them as shown below. Table 2, 

where the first column represents the distance, the second column represents the pressure, the third 

column represents the oil flow at the source, and the last column represents the oil flow at the point of 

leakage, with every five rows representing one leak or non-leak condition. The data are arranged in 

this way to facilitate analysis and understanding of the results, as this organization allows each leak 

or non-leak condition to be better visualized and evaluated effectively. 

Table 2.  The sample of dataset 

Total Distance (Km) Pressure (barge) Flowrate (STB/h)  Leak Flow Rate (STB/h) 

0 3.499989 253.0 0 

2.5 3.490852 0 63 

5 3.482406 0 0 

7.5 3.465624 0 0 

10 3.44756 0 0 

5. Experiments 

5.1. Classification 

The target data set is split into 70% for the training set and 30% for the validation and test sets. 

We used Jupyter Notebook in Anaconda Navigator using Python 3.7, together with TensorFlow 2.1 

and Keras packages. The system operated on Windows 10 with an Intel i7 CPU. Equations (12), (13), 

(14), and (15) are used to evaluate the classification performance of various approaches and other 

parameters. 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (12) 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (13) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (14) 

 
𝐹_𝑠𝑐𝑜𝑟𝑒 =

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (15) 

Where TP, TN, FP, and FN are the abbreviations of true positive, true negative, false positive, 

and false negative, respectively. After running the program for a number of epochs (32), we obtained 

an accuracy of training of about 92.4%, as shown below in Fig. 8. 

 

Fig. 8. Accuracy of training 

And by calculating the parameters using the information from the confusion matrix, we can 

evaluate the classification level for detecting the presence of a leak or not. 

5.2. Regression 

Moving on to the next level, we improved our approach to not only model the presence or absence 

of leakage, but also estimate the location and volume of leaked fluid using MATLAB 2022b, 

incorporating regression methods, especially 1DCNN (Convolutional Neural Network) regression. 

This advanced technology allows us to predict continuous numerical values, such as the location and 

size of fluid leaks in a pipeline. Fig. 9. Describe the detection and location processes. 
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Fig. 9. Process of detection and location 

In addition to using CNN regression, we calculated various metrics to evaluate the accuracy of 

our predictions. These metrics include mean square error (MSE), root mean square error (RMSE), 

mean absolute error (MAE), root mean absolute error (RMAE), and relative error (RAE), as shown in 

the equation below. 

1. Mean square error (MSE). 

 
𝑀𝑆𝐸 =

1

𝑛
∑(𝑦𝑖 − 𝑦𝑖

^)
2

𝑛

𝑖=1

 (16) 

2. Root mean square error (RMSE). 

 𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 (17) 

3. Mean Absolute Error (MAE). 

 
𝑀𝐴𝐸 =

1

𝑛
∑|𝑦𝑖 − 𝑦𝑖

^|

𝑛

𝑖=1

 (18) 

4. Root Mean Absolute Error (RMAE). 

 𝑅𝑀𝐴𝐸 = √𝑀𝐴𝐸 (19) 

5. Relative Error (RAE). 

 
𝑅𝐴𝐸 =

1

𝑛
∑ |

𝑦𝑖 − 𝑦𝑖
^

𝑦𝑖

|

𝑛

𝑖=1

× 100% (20) 

Where: 𝑛 is number of samples; 𝑦𝑖is the actual target value; 𝑦𝑖
^ is the predicated value. By 

calculating these metrics, we can comprehensively evaluate the performance of our CNN regression 

model in predicting leak’s location and estimating fluid quantities. This allows us to evaluate accuracy 

and improve the Regression Training process. 

5.3. MATLAB App Designer 

Converting the code into a user-friendly platform using MATLAB App Designer after 

completing the regression training and calculating the system evaluation parameters is a great idea to 

enhance accessibility and ease of use. App Designer allows the creation of interactive MATLAB 
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applications using a graphical user interface (GUI) that users can easily navigate. The design was 

completed as shown in Fig. 10. 

 

Fig. 10. Pipeline leakage detection and localization (GUI) 

Where the first five fields represent the liquid pressure points at the distances marked next to 

each of them, while the sixth field represents the flow rate of the liquid at the source. When the check 

button is pressed, a message is displayed explaining the absence or presence of a leak or no-leak. 

6. Result 

After the classification step, we obtained the results as the blow graphs and confusion matrix. We 

notice the high performance of Calsifiction.  The graphs in Fig. 11. show the training and validation 

losses, and Fig. 12. shows the training and validation accuracy. We notice the two curves represent 

the training and validation are close to each other, which means the value for training and validation 

is near; on the other hand, the accuracy is high. 

  

Fig. 11. Training and validation loss                              Fig. 12. Training and validation accuracy 

Fig. 13 shows the confusion matrix of the true and false predictions of the system. There are four 

regions. the first one with number (214), which represents true and predicts equally the same status 

(no leak); the second one with number (191), which represents true and predicts equally the same 
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status (leak); the other regions represent not accuracy in calcification (a small number). The confusion 

matrix used to determine metrics such as classification accuracy, precision, recall, and F-score. 

 

Fig. 13. Confusion matrix 

1. Classification Accuracy is defined as the proportion of accurate predictions to the entirety of 

predictions made. 

2. Precision is calculated as the number of real positive predictions divided by the entire number 

of positive forecasts. 

3. Recall It is the ratio of true positive predictions to the total number of actual positives. 

4. The F1-Score is the harmonic mean of precision and recall. It measures test accuracy while 

balancing precision and recall. All these parameters are calculated as shown in Table. 3. 

Table 3.  Evolution parameters of classification 

Parameters Value 
Accuracy 0.944 

Precision 0.896 

Recall 0.989 

F1-Score 0.94 

 

After the classification step is finished with high accuracy. The next stage is approaching. The 

training process in the regression step to estimate the location and volume of leaked fluid is shown in 

Fig. 14, and Fig. 15 shows the predicted visualizations (plot the predicted values vs. the true values). 

After the completion of the regression training process, the overall performance of the system was 

evaluated, and the parameters for the evaluation were calculated as shown in Table. 4. 

During this process, we modified several training parameters, such as the number of layers, 

learning rate, epoch, and batch size, to achieve the best possible outcomes. Data preprocessing is 

necessary before constructing the model. Standardizing the data before it is input into the neural 

network accelerates weight parameter convergence. 

After completing the training processes for both classification and regression, we created a GUI 

model to facilitate users in examining the sensors data. The following figure shows the data 

examination processes for two different cases. 

The Fig. 16 represent the input data from the (pressures and flow) sensors, and when you press 

the check button, it predicts the location of the leak as well as the amount of liquid coming from the 
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leak. While the Fig. 17 shows entering the data coming from the sensors and in this case show no leak 

in pipeline for this input data, both cases gave relatively acceptable results that are close to the real 

situation. 

 

Fig. 14.  Regression training process 

 

Fig. 15.  Visualize the predictions values against the true values 

After completing the training processes for both classification and regression, we created a GUI 

model to facilitate users in examining the sensors data. The following figure shows the data 

examination processes for two different cases. 
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Table 4.   Evolution parameters of regression 

Parameters Value 
Mean Square Error (MSE) 200 

Root Mean Square Error (RMSE) 14.13 

Mean Absolute Error (MAE) 10.294 

Root Mean Absolute Error (RMAE) 3.208 

Relative Error (RAE) 0.000388 % 

 

  

Fig. 16. MATLAB APP (oil pipeline leak state check) 

The Fig. 16 represent the input data from the (pressures and flow) sensors, and when you press 

the check button, it predicts the location of the leak as well as the amount of liquid coming from the 

leak. While the Fig. 17 shows entering the data coming from the sensors and in this case show no leak 

in pipeline for this input data, both cases gave relatively acceptable results that are close to the real 

situation. 

  

Fig. 17. MATLAB APP (oil pipeline no-leak state check) 

7. Conclusion 

This work aims to create a one-dimensional convolutional neural network model that can 

determine the detection, localization, and amount of oil spills using pressure and flow rate sensors for 

a 10-kilometer pipeline as input data. We subsequently used a numerical data set obtained for distinct 

sources of leakage at varied distances to train and evaluate the model. 
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7.1. Step of Research 

Three levels divided the work: 

a. Classification: After we build our 1DCNN by using Jupyter Notebook Anaconda in Python 3.7 

with TensorFlow 2.1 and Keras libraries, the target dataset is divided into 70% for the training 

set and 30% for the validation and test sets. We acquired the following results for the evaluation 

parameters: (Accuracy: 0.944, Precision: 0.896, Recall: 0.989, F1 Score: 0.94). 

b. Regression: at this level, the approach was improved to not only model the presence or absence 

of leakage but also estimate the location and volume of leaked fluid using MATLAB 2022b, 

resulting in the following results: Mean square error (MSE) = 200, root mean square error 

(RMSE) = 14.13, mean absolute error (MAE) = 10.294, root mean absolute error (RMAE) = 

3.208, and relative error (RAE) = 0.000388%. 

c. Graphical user interface application: we design a user-friendly platform using MATLAB App 

Designer to make an easy and accusable end user interface. 

7.2. Limitations of Our Work 

1. This work requires a large number of sensors and a history of data related to the study topic 

because the process of collecting data from sensors takes a lot of time. 

2. Applying the dataset to another pipeline will render it useless because it cannot be generalized 

to all pipelines in an oil field. 

3. If the data set is insufficient or the number of sensors is insufficient, this will limit the accuracy 

of spill results (classification, localization, and estimation of oil spills). 

4. Any failure in the sensors located along the oil pipeline will lead to error detection, and the 

location results in this case will be unreliable. 

5. External influences on the sensors may lead to incorrect data being included, and thus this may 

affect giving false alerts. 

6. This method cannot identify more than one leak location on the conveyor line at the same time. 

7.3. Comparison with Previous Research 

This research utilizes an internal calculation-based (CNN) leak detection approach. Monitoring 

production data from several sensors located throughout the oil pipeline, including inlet and outlet 

pressure and flow rate, helps achieve this. Operators evaluate any departure from normal behavior and 

subsequently identify it as a leak. 

This approach differs from exterior leak detection methods such as visual human inspection and 

external systems like acoustic and fiber optic. 

1. Visual Manual Inspection: Visual inspection involves manually monitoring the pipeline to 

detect leaks. Patrolling may be conducted using several methods, such as walking, in a vehicle, 

or from a helicopter. The operator inspects the area for discoloration or other signs of leakage. 

The inspection team's skill, inspection frequency, and leak size influence leak detection 

effectiveness. Restricted to accessible pipelines; lacks real-time monitoring, leading to increased 

oil and gas loss and environmental damage. 

2. External systems rely on local sensors to detect fluids leaking from pipelines. Impedance 

techniques use wires equipped with fiber optic or electrochemical sensors to detect liquids. 

Sniffing techniques rely on detecting vapors through tubes. Acoustic techniques rely on 

detecting leakage sounds. The systems are very sensitive to leakage and can precisely pinpoint 

them. These systems are only used in sensitive areas or for short sections of pipelines due to 

their high prices and inability to accurately compute the volume of fluid leaked. 

From installing specific devices along the pipelines for hardware-based leak detection makes 

them more expensive and unable to determine the leakage rate. On the other hand, there are software-



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

329 
Vol. 4, No. 1, 2024, pp. 312-333 

  

 

Mustafa Raad Al-Khalidi (Oil Pipeline Leak Detection in Iraqi Oil Fields based on 1DCNN) 

 

based techniques that deal with Software programs, at their core, implement algorithms continuously 

to monitor the state of pressure and flow rate or other pipeline parameters and can infer, based on the 

evolution of these quantities, if a leak has occurred. and this method does not have the complexities 

of most methods in this area, and its accuracy in leak localization is very good. 

7.4. Most Important Challenges Faced in this Research 

1. Sparse Data Challenges: Pipeline data, particularly in regards to leak detection, often has gaps 

and inconsistencies. However, convolutional neural networks (CNNs) require ample data for 

optimal performance. Sparse data can cause models to overfit or generalize poorly. 

2. Class Imbalance Limitations: In pipeline data, the distribution of leak and non-leak events is 

frequently unbalanced. CNNs may struggle with imbalanced datasets, resulting in biased 

predictions or reduced accuracy for detecting leaks (the minority class). 

3. Which data should be used: Because at first, when we worked on this research, we didn’t know 

how much data would represent the normal behavior of the pipelines (for example, one month 

or more). 

7.5. Suggestions for More Study in this Field are as Follows 

Implement this research by using sensors to read the thickness of the pipeline at certain points, 

evaluate the amount of corrosion that occurs in the walls of the pipes, and calculate corrosion rates, 

estimating the remaining life of the pipe based on the API 670 (pipeline inspection) standard. This 

research may overcome the shortcomings of the current fracture detection systems, which mostly rely 

on human input and cut costs and labor while conducting crack inspections. 
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