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 The primary distinguishing feature of mobile robots is the ability to traverse 

various environments, setting them apart in the realm of robotics. The 

mobility of a robot hinges primarily on its locomotion mechanism, which 

dictates how it moves. The existing unimodal mobile robots are limited to 

work within the environment for which they are designed for and hence lack 

a scope to adapt the change in the terrain especially when they put to work 

in a mixed environment like land and water. Many applications like land 

and underwater search/rescue, shore infrastructure inspection, coastal area 

defence and security, offshore energy harvesting, space exploration, etc. 

demand a mobile robot that can traverse in both terrestrial and aquatic 

environments with the help of dual or multimodal locomotion mechanism, 

something like an amphibious animal. Most of the available amphibious 

robotic solutions have different appendages for both the environment, need 

human intervention to changeover the mechanism for transition, require 

different driving system for land and water locomotion and have fragile 

structures that limit the manoeuvrability. The proposed conceptual design 

called “Ampheel” is a novel amphibious locomotion mechanism inspired 

by the biomechanics of freshwater turtles. Ampheel incorporates a rigid 

wheel, enabling the robot to move on land, integrating soft actuators within 

it which emulate the turtle's leg-like extensions and enable the aquatic 

locomotion. Unlike the existing amphibious robots, the Ampheel utilizes 

the rotational motion of itself as a common driving system for both the 

environments. This reduces the need of multiple driving systems and also 

simplifies the control system. Ampheel is designed for safe travelling on 

land considering the maximum payload of robot as 20 kg including self-

weight. Topology optimization of Ampheel is also carried out using 

ANSYS software for reduction of weight. Additionally, a unique interfacing 

shaft is designed that transmits the required torque to Ampheel for rotation 

and also channelise the compressed air to soft pneumatic actuators for 

inflation during rotation of Ampheel in aquatic setting. The fabricated 

Ampheel assembly is experimentally checked for failure under the 

applicable loading condition and found safe. 
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1. Introduction  

Robotics is one of the fastest growing fields and has attracted many researchers to contribute. 

Robotics involves design, construction, operation, and use of the robots. The goal of robotics is to 

design machine that can help and assists humans in their day-to-day lives and keeps everyone safe. 

Research has been done and still continue in various advanced fields of robotics like Swarm Robotics, 

Bio Robotics, Soft robotics, Mobile Robotics etc.  

Mobile robotics mainly deals with the robots which are capable to locomote from one place to 

another place for performing required task. The first choice of locomotion mechanism for a land based 

mobile robot is obviously tending to wheels due to the less complex structure, higher efficiency of 

manoeuvring on flat surface and ease of control. In spite of many such pros the use of wheel 

locomotion is limited to only flat and solid surfaces. The situation where wheels, the human invention, 

were not going to serve the purpose, researchers had taken inspiration from nature and tried to design 

the robot which has bio-inspired locomotion mechanism such as legs developed by Manolescu [1]. 

The other example is “BigDog” developed by Playter et al. [2] which is a four-legged robot resembles 

like a Dog. Rubio, Valero and Llopis-Albert [3] have presented an exhaustive review of various land 

based mobile robot equipped with different locomotion mechanism which is summarised and 

represented in Fig. 1. After having studied the land-based mobility the researchers explored the scope 

of robot mobility beyond the terrestrial environment to aerial [4] and aquatic settings. Russo and 

Ceccarelli [5] have provided the list of different locomotion mechanisms for terrestrial, aerial and 

aquatic setting which are reproduced in Fig. 2. Not being limited to single environmental locomotion, 

the researchers further extended the mobility scope of the robot to dual or multi environments, majorly 

nature inspired, and incorporate multimodal locomotion mechanisms as discussed by Adarsh et al [6]. 

The robots fitted with such multimodal locomotion mechanism that enables the robot to locomote on 

land as well as in air are classified as Aerial Hybrid robots for example “The flying monkey” 

developed by Mulgaonkar et al. [7] and robot developed by Bachmann et al. [8] which can run and 

fly.  

 

 Conventional land based mobile robots [3] 
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The multimodal robot that can move on land as well as can also manoeuvre in aquatic 

environment are called Amphibious robot. Many such robots are developed by researchers and put in 

practice for various applications such as underwater railway inspection and maintenance robot 

developed by Liu et al. [9], visual inspection robot for strainer assembly of water tank in a nuclear 

power plant proposed by Jang et al. [10], spherical rolling robot by Diouf et al. [11], Mudskipper-

inspired amphibious robotic fish by Lin et al. [12], robot with self-rotating paddle-wheel mechanism 

proposed by Kim et al. [13], tortoise-like soft mobile robot from Sun et al. [14], Crab-like robot 

proposed by Hu et al. [15], amphibious vehicle for coastal surface zone survey as proposed by Bak et 

al. [16], etc. These robots are found useful in the applications like environmental monitoring, land and 

underwater search/rescue, marine ecosystem study, shore infrastructure inspection, coastal area 

defence and security, underwater archaeology, offshore energy harvesting, space exploration, etc. A 

few more examples of bio-inspired amphibious robots are discussed in the following section.   

An autonomous amphibious robot AQUA developed by Dudek et al. [17] gathered so much 

attraction among the researchers due to its characteristic to swim via motion of its legs rather than 

using conventional thrusters. AQUA is based on RHex (proposed by Altendorfer et al. [18] and Saranli 

et al. [19]), a terrestrial six- legged robot designed inspired from cockroach locomotion. AQUA is a 

biologically inspired robot, capable to operate both legged walking and swimming. It was built for the 

industrial aquatic task mainly concentrating on Site Acquisition and Scene Reinspection (SASR). 

However, it needs human intervention to changeover the mechanism to transit from land to water and 

vice-versa. 

 

 Mobile robot locomotion [5] 

The multi environmental mobility is much useful for space exploration for example Amphibious 

Rover for a mission to Titan [20] wherein the propulsion was obtained by raising the wheels, above 

the liquid and using them as paddle-wheels. Yang et al. [21] had designed the AmphiRobot which has 

modular design such that the robot can do fish-like swimming in horizontal plane and dolphin-like 
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swimming in vertical plane but this needs manual changeover of mechanism. Later it was upgraded 

to AmphiRobot II [22], [23] in which interchangeable propeller design was replaced by a novel wheel-

propeller-fin mechanism that incorporates wheel and fin both to avoid the interchangeability. 

However, this lacks to provide high torque requirement.  Liang et al. [29] presented the concept of 

AmphiHex-I by taking inspiration from AQUA and RHex in which transformable leg-flipper 

composite propulsion mechanism is used. The concept of AmphiHex-I is based on transformable leg-

flipper module. Further development was done in AmphiHex-1 considering design by Zhang et al. 

[30] and considering gait planning and gait transition by Kong et al. [31]. An attempt was made in 

AmphiHex-I to overcome the limitation of AQUA (i.e. manual interchangeability) by using 

transformable leg-flipper module. This is a single module which can work as leg and flipper both 

without any manual interchange but this reduces the robot stiffness due to frail structure. Outdoor 

locomotion experiments were conducted on various substrates to validate the effectiveness of 

AmphiHex-I’s transformable flipper legs and locomotory performance by Zhang et al. [32]. Later on, 

it was observed that the novelty of the AmphiHex-I (i.e. transformable leg-flipper module) became its 

limitation.  In the discussed module, a leg is generated by combining small-small segments by which 

the leg-fin transformation is possible. This approach makes the structure fragile and increases the 

probability of damage to the structure.  Another issue was in bending of the legs. Bending is possible 

in only one direction, so when the leg counter rotates in the opposite direction from its original walking 

mode, the leg behaves like a straight rod and generates great impact, which is absolutely inefficient 

for locomotion. To avoid this issue, a new version “AmphiHex-II” was proposed by Zhong et al. [33] 

with a novel design of variable stiffness leg with carbon fiber frame which is strong enough to serve 

the purpose. Experimental results of the AmphiHex-II shows that maximum speed was achieved by 

the robot is about 0.35 m/s which can be improved further by detail investigation and research. 

The kinematic models of a reconfigurable robot employing e-Paddle (Eccentric Paddle [24]) 

mechanism called ePaddle-based quadruped robot (eQuad) were developed by Sun and Ma [25]. It 

suggests that this unique reconfigurable ePaddle mechanism has the potential to achieve both legged 

and wheeled locomotion through five principal kinds of gaits as discussed by Sun et al.[26] which are 

wheel-like rolling, legged walking [27], wheel-leg-integrated rolling, and two aquatic paddling gaits 

[28]. Kim et al. [34] had developed a prototype of robotic platform inspired from the basilisk lizard, 

which is well known for its ability to run on water surface. At initial stage, the issue was in selection 

of the shape of footpad which was solved by experimental trials and at the end, rectangular shape was 

selected for better terrestrial and aquatic locomotion. However, independent motion of each leg is not 

possible to improve the manoeuvrability. Another example of amphibious robot is “R-crank” 

presented by Yamada et al. [35] which uses the improved locomotion mechanism of “Crank-wheel” 

robot developed by Nakano and Hirose [36].   

The available amphibious robots have one or other kind of limitations like different driving 

system for both the environment, manual intervention for interchanging mechanism, fragile structure, 

less degree of manoeuvrability, etc which attract the scope of the further research and development in 

this field. An attempt is made to conceptualize and design a novel amphibious locomotion mechanism 

that utilizes a common driving system for both the environments, doesn’t need human intervention 

for interchanging the mechanism while transiting from land to aquatic environment or vice-versa and 

also has sufficient rigidity with good degree of manoeuvrability. The objective of the present work is 

to design amphibious locomotion mechanism that provides a wheel-based locomotion for terrestrial 

environment and roving or paddling type of locomotion using axially inflated soft pneumatic actuators 

(SPA) in aquatic environment, utilizing a common driving system (i.e., rotation) for both the 

environments. The proposed wheel is also needed to have housing and other support system for soft 

pneumatic actuators to rove over the water surface by the wheel rotation motion. Additionally, a novel 

way to channelise the inflating air supply to soft actuator during rotation of the wheel is also required 

to be thought off. The research contribution of the proposed design of Ampheel is to advance the 

capabilities of mobile robots in traversing diverse environments and widen the scope of further 

research in multimodal locomotion mechanism for mobile robots. 
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Having identified research gap and the objective of the present work in Section 1, Section 2 

discusses about the bio-inspired conceptualization of Ampheel, fabrication of Ampheel and design of 

interfacing shaft. The topology optimization, FEA of interfacing shaft and the experimental 

investigation of Ampheel assembly is deliberated in Section 3. The conclusions, observations and 

future scope are noted in Section 4 with listed references at the end.  

2. Methods 

Wheels are the most effective locomotion mechanism for flat, continuous and solid surfaces as it 

offers many advantages like ease of control, simplicity of design and construction. It is best suited on 

ground locomotion as it can provide good amount of tractive effort i.e. the amount of force between 

wheel and track to locomote the body by overcoming the effect of friction resistance and rolling 

resistance.  

2.1. Bio-Inspired Conceptualization 

Wheels struggle to provide the required force when it loses the continuous contact of solid surface 

as in case of aquatic environment. To manoeuvre in aquatic setting, many mechanisms exist in nature 

adapted by various aquatic animals [37]-[42] as depicted in Fig. 3. It is observed that the animals like 

Fish, Salamander, Crocodile, Snake etc. are using undulation of their body parts for their underwater 

manoeuvring which can be replicated by multiple connected structural links motion with multi degree 

of freedom. These types of hyper redundant structures are not only complex in construction but also 

need multiple actuators for each independent motion of links. In addition, it is also difficult to design 

an adjoining mechanism with this undulating bodies for land locomotion and hence it is not found 

suitable for the proposed work. The animals like Jellyfish and Octopus have very soft body and uses 

their tentacles to generate the trust force for the motion in the water. This mechanism is also not 

considered for present work as it lacks a rigidity required for land locomotion. Frog uses a kicking 

action of its rear limbs to generate the thrust force for underwater mobility while jumping action on 

land. The jumping gait using legs has its own limitations and complexity in operations on land and 

hence the frog locomotion is also disregarded in the proposed design. 

The anatomy of the turtle body and its locomotion pattern over land and underwater finds it the 

suitable candidate to consider as biological inspiration for the proposed work. The turtles are broadly 

categorized in three types, (i) sea water turtle, (ii) fresh water turtle and (iii) terrestrial turtle (tortoise). 

Unlike sea water turtle and fresh water turtle the terrestrial turtles, also called tortoise, can majorly 

live on land and not a good swimmer. Sea water turtle uses flapping action (Fig. 4 (a)) of their large, 

strong and muscular forelimbs to swim in ocean [43]. Their hindlimbs are very small and not have 

enough propulsive functionality. Sea water turtle cannot lift their body using their limbs and hence 

has limitation in terrestrial locomotion.  The fresh water turtle has rigid and robust shell encompasses 

its body. It has four active limbs equally strong enough to contribute in mobility. Fresh water turtle 

can swim in ponds, lakes, flowing rivers by rowing action of all four limbs (Fig. 4 (b)). The anatomy 

of the fresh water turtle body as well as its dual locomotion mechanism is considered as a biological 

inspiration for the proposed design for aquatic locomotion. Fresh water turtle’s ability of retracting 

the limbs inside the body is also considered in the proposed design for reconfiguration of locomotion 

mechanism from land to water transition.  

An attempt is made here to design a locomotion mechanism such that it utilizes the wheel rolling 

action for land locomotion and also replicate the rowing action of fresh water turtle’s leg for aquatic 

environment using limb like component. The wheel provides circular motion while rolling on the land. 

The same circular motion of the wheel is to be utilized to move the limb like structure in the aquatic 

domain so that no separate actuation and mechanism is needed for both the domain and 

reconfiguration will be flow less during transit. For this, it is required that the circular motion of the 

limb like structure must compensate the rowing motion profile of turtle’s leg.  
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 Aquatic locomotion of animals  

 

 Trajectory of (a) sea water turtle and (b) fresh water turtle [43] 
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The motion of the fresh water turtle leg forms an elliptical cone. Proximate trajectory, the 

approximate locus that involves close proximity with path traced by the tip of the leg of fresh water 

turtle, is shown in Fig. 5. Here the elliptical arc ‘A-B-C’ represent the propulsive stroke while the arc 

‘C-D-A’ shows recovery stroke. The major cone angle (ψ) shows the total angular travel of leg in 

horizontal plane that decides the major axis of the ellipse while the minor cone angle (ζ) shows the 

total angular travel of leg in vertical plane which decides the minor axis of the ellipse. Using the value 

of the major and minor axis of the ellipse, the total length of stroke can be estimated by considering 

the Ramanujan’s approximation theorem [44]-[48] for circumference of an ellipse (Pe) as per (1) and 

(2). 

 

 Proximate trajectory of fresh water turtle legs with proposed compensation 
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Where, a is semi major axis ≈ L sin (ψ/2) and b is semi minor axis ≈ L sin (ζ /2), while L = length of 

leg. Substituting these values in (1),  
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Considering ψ≈1000 and ζ≈250 (from the literature [49]) in (2), Pe ≈ L×3.333 unit. Pe shows the 

length of elliptical path traced by the turtle’s leg tip during the stroke. The proposed mechanism is 

designed such that it should compensate the same stroke length by the circular motion of some limb 
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like structure called as bio-inspired leg henceforth. Considering the semi minor axis (b ≈ L sin (ζ /2) 

≈ L×0.216) as the radius of the circular motion of the proposed leg, the length of the path traced by it 

is Pc ≈ L×1.359 unit which is almost 2.45 times less than the required stroke length i.e., Pe (=L×3.333 

unit). To compensate the total stroke length (Pe), multiple of similar legs are needed. In the proposed 

design, 3 bio-inspired legs are used which compensate the elliptical motion of the turtle leg as shown 

in Fig. 5 (d) and integrated with the rolling wheel.  

Fig. 6 shows the first conceptual design of an amphibious wheel (Ampheel) which is a rigid wheel 

structure with three equally spaced cavities to house the bio-inspired leg. These legs remain in the 

cavity while the rolling action of the wheel is being utilized for land locomotion as if like the turtle’s 

leg retracted in its shell. In the aquatic setting, these legs protrude out from the wheel body and mimic 

the rowing action of turtle’s leg upon the rotation of the Ampheel. To mimic the retraction and 

stretching movement of turtle’s leg as well as to provide the sufficient propelling effect, the bio-

inspired legs are specially designed in the form of axially expanding SPA as in [50]. The SPAs are 

made of soft elastomer materials moulded in a design to have multiple cavities within and expand 

when inflated using air pressure. These SPAs are the best suitable in the proposed design of bio-

inspired legs. The length of SPA is decided as 60 mm considering the average length of the turtle’s 

leg as cited in the literatures [51], [52].  

To accommodate this SPA of 60 mm length in the wheel body before extension, the cavity of the 

same depth is needed. Three cavities are provided at triangularly spaced at equal radius on the 

Ampheel. The cavity is created at the minor angle ζ to replicate the rowing motion of turtle leg when 

extended. The cavity depth (60 mm) and inclination (ζ) further fix the Ampheel width as 85 mm and 

the diameter as 200 mm to a minimum requirement as shown in Fig. 6. 

Conceptual functionality of the Ampheel is presented in Fig. 7 considering the locomotion for 

terrestrial environment (Fig. 7(a)) and aquatic environment (Fig. 7(b)). The rigid robot body is fitted 

with four Ampheels making it a four wheeled drive robot. When the robot is in terrestrial environment, 

it can locomote by rotation of wheel and SPAs remain inside during the terrestrial locomotion. Aquatic 

environment can be handled by inflated SPAs, which protrude out from wheel body upon inflation 

and help the robot to propel in the aquatic environment by mimicking the rowing motion.  

 

 First version of ampheel 

2.2. Fabrication of Ampheel 

Considering the dual environments functionality, the material selection to fabricate the Ampheel 

become crucial. The Ampheel material should be non-corrosive, having good strength, light weight 
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but tough and durable, having good impact strength and wear resistance in addition to good heat 

resistance. The conventional metals are not suitable for the present application due to the corrosive 

property and hence polymer is the more appropriate option. Looking to the intricate shape of Ampheel 

the conventional plastic moulding is difficult. Hence, 3D printing approach over traditional 

manufacturing is used to fabricate the Ampheel considering design freedom and the ability to create 

complex designs. Two most popular materials for 3D printing are PLA (polylactic acid) and ABS 

(acrylonitrile butadiene styrene). 

 
(a) (b) 

 Locomotion in (a) terrestrial environment (b) aquatic environment 

PLA is the easiest material for printing but at the same time it is brittle and less resistant to heat 

and chemicals. These characteristics of PLA limits its application on actual field. On the other end, 

ABS fulfils the required characteristics and making itself a suitable candidate for functional prototype. 

Fig. 8 shows the first model of Ampheel, fabricated using Fusion Deposition Method (FDM) 3D 

printing technology from ABS material. Here Creality Ender 3 Max 3D printer is used with Creality 

Slicer 4.8.2 software wherein layer height is kept 0.2 mm, infill density is of 20% with triangular 

pattern is incorporated. ABS material has very high probability of warping, cracking and poor 

adhesion especially when open frame 3D printer is used. These issues can be minimized with 

application of sufficient amount of adhesion on bed and by adjusting specific settings in 3D printing 

process. These settings include printing speed (30 mm/s), retraction speed (25 mm/sec), build plate 

adhesion type (raft), draft shield (Activate).  

 

 Fabricated ampheel  

2.3. Design of Interfacing Shaft 

To demonstrate the intricate assembly elements of any symmetric vehicle a quarter vehicle model 

is commonly used. Here the proposed Ampheel is to be fitted with the mobile robot symmetrically 

and hence Quarter Mobile Robot Model (QMRM) is used to show case the assembly of Ampheel with 

other components. Conceptual design of QMRM is shown in Fig. 9 with other components such as 
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DC geared motor, gear, control unit, interfacing shaft and robot body. A DC geared motor provide the 

necessary torque which is transmitted to Ampheel through a gear drive and an interfacing shaft.  

 
(a) (b) 

 Conceptual design of quarter mobile robot model (QMRM) (a) exploded view (b) assembled view 

As mentioned earlier the Ampheel houses SPA which will be inflated by air pressure. The 

constant air pressure is required to be maintained until the SPAs are in use with the rotation of the 

Ampheel and for the same the SPAs are required to be connected with the air pressure source 

continuously. It is a challenge to maintain the SPAs connection with air supply while Ampheel is 

rotating without entangling of pneumatic tubing. This challenge is overcome by using a Pneumatic 

Rotary Connector (PRC) (as shown in Fig. 9) with specially designed interfacing shaft. The interfacing 

shaft serves dual role of transmitting power to Ampheel for rotation as well as to channelise the air 

flow to SPAs. The design of interfacing shaft is shown in Fig. 10. The interfacing shaft has three 

external splines on its one end that fix into the corresponding slots in Ampheel such that power 

transmission takes place effectively without slipping. Employing three splines offers a robust and 

reliable method of connecting a shaft with a rolling wheel, providing balanced load distribution, 

stability, and enhanced reliability. The other end of the shaft is hollow and has three hollow cylindrical 

protrusions which are connected with the three SPAs housed in the cavities of Ampheel through 

pneumatic tubing. The hollow shaft end is connected to the control unit through PRC.  

 

 Design of interfacing shaft 
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3. Results and Discussion 

3.1. Topology Optimization 

The first version of Ampheel as shown in Fig. 8 weighs 986 gm which leads to around 4 kg for 

four Ampheels attached to the robot body. This increases the self-weight of the robot which further 

limits the payload capacity of the robot. It is thereby needed to minimize the weight of Ampheel 

without compromising the strength. This is achieved by topology optimization of Ampheel. Topology 

optimization is carried out using ANSYS simulation software which suggests the places from where 

the materials can be removed without significant effect on the strength. The step-by-step procedure of 

topology optimization using ANSYS is shown in Fig. 11. The main criteria of optimization here is to 

reduce the mass keeping the strength in the permissible limit. 

 

 Approach of topology optimization 

Here the total weight supported by four Ampheels is assumed as 200 N including robot body 

weight and the payload. As per the design, four Ampheels are attached symmetrically on either side 

of the robot body and hence each Ampheel withstand the load of 50 N. The Ampheel has three equi-

spaced cavities in it due to which the load bearing area differs at different locations as shown in Fig. 

12. In case 1 (in Fig. 12) the load bearing area (LBA) is maximum while it is minimum in case 2 when 

one of the cavities is at the bottom most location. For both the cases the static structural analysis is 

carried using ANSYS software. It is observed that the maximum stress produced is 0.15932 MPa and 

0.18878 MPa respectively for case 1 and case 2 (refer Fig. 13 and Fig. 14). The tensile strength of the 

ABS material is 26.84 MPa (as shown in Table 1) which is far greater than the induced stress. This 

shows that the present version of Ampheel is much overdesigned and has ample scope of optimization 

to reduce the material and weight keeping the stress in the permissible limit under the action of same 

payload of 50 N. 
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It is previously mentioned that the diameter and width of the Ampheel cannot be reduced 

considering the housing of SPAs and hence a topology optimization is carried out using ANSYS 

software. Excluding the diameter, width and housing of SPAs, the remaining areas of the Ampheel 

are considered for removal of materials based on minimum stress. Preliminary results of topology 

optimization obtained from ANSYS are presented in Fig. 15. Results show the possible domain from 

where the material can be removed. Considering the suggestion of ANSYS software a revised version 

of Ampheel is designed as shown in Fig. 16. 

 

 Boundary conditions for finite element analysis 

 

 Front and back isometric views for case 1 under 50 N applied load 

Table 1.  Material properties considered for finite element analysis [53], [54] 

Material Tensile Strength Density Young’s Modulus Poisson’s Ratio 

Acrylonitrile Butadiene Styrene 

(ABS) 

26.84 

MPa 
1.04 gm/cm3 

2400 

MPa 
0.37 

 

The optimized Ampheel is fabricated which weighs 348 gm (as shown in Fig. 16) which is 64.7% 

less than the previous version. The static structural analysis of revised version of Ampheel is also 

carried out using ANSYS and results are produced in Fig. 17 and Fig. 18 for both the cases under the 

application of 50 N payload. The maximum stress produced in both the cases is 0.720 MPa and 0.315 

MPa which is still in safe permissible limit. This shows that the optimization of Ampheel doesn’t 

compromise the overall payload capacity of robot rather increase it due to reduction in weight of 

Ampheel. The optimized Ampheel also maintain the structural integrity of the initial design to 

accommodate the SPAs and to provide sufficient rolling contact for terrestrial environment. Due to 

reduction in weight, less material is needed for manufacturing using 3D printing and it also saves time 
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and energy. The further optimization can still be applied by reducing the Ampheel rim thickness but 

considering the ease of fabrication, possibility of impact loading and other unforeseen circumstances, 

the present design of Ampheel is considered as optimized design. 

 

 Front and back isometric views for case 2 under 50 N applied load 

 

 Preliminary results of topology optimization 

 
(a) (b) 

 Optimized ampheel (a) orthographic and isometric views (b) actual image 
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 Front and back isometric views for case 1 (optimized ampheel) under 50 N applied load 

 

 Front and back isometric views for case 1 (optimized ampheel) under 50 N applied load 

3.2. FEA of Interfacing Shaft 

The interfacing shaft is a critical component that transmit the power from motor to Ampheel and 

bear the maximum load. The stress analysis (Fig. 19) of interfacing shaft is carried out using FEA to 

check the strength. The static structural analysis of the shaft is carried out in ANSYS workbench 

wherein the hollow end of the shaft is considered fixed while the other end is attached to the Ampheel. 

The tractive effort acting on the wheel is estimated as, 

 𝐹𝑡 ≈ (𝜇𝑓 + 𝐶𝑟𝑟)𝑊1  (3) 

Where, 𝜇𝑓 is Coefficient of friction = 0.2 to 0.6 [55]-[58], 𝐶𝑟𝑟 is Coefficient of rolling resistance = 

0.01 to 0.35 [55]-[58] , 𝑊1 is load acting on single wheel = 50 N (from Fig. 12). Here, μf + Crr = 1 is 

considered for extreme condition which gives Ft ≈ 50 N. As shown in Fig. 19 (a), the Ampheel is 

loaded with total tractive effort of 50 N acting tangentially over the cylindrical surface while the free 

end of the interfacing shaft is provided with fixed support. The stress distribution in wheel-shaft 

assembly is shown in Fig. 19 (b). The high stress concentration is observed at the point of intersection 

of shaft main body with the cylindrical protrusions as shown in Fig. 19 (c). The maximum von-Mises 

stress of 18.42 MPa is observed which is under the permissible limit with factor of safety of 1.46 

considering material properties listed in Table 1. 
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 FEA simulation using ANSYS (a) boundary conditions, (b) von-mises stress distribution for wheel-

shaft assembly, (c) linearised von-mises stress distribution over the longitudinal section of the shaft 

3.3. Experimental Investigation 

The Ampheel with interfacing shaft is fabricated, assembled and tested for bending and torsion 

by the application of design load of 50 N (~5 kg) in radial and tangential direction respectively. Fig. 

20 shows the experimental set up consists of UR10e six axis robotic manipulator, digital spring gauge, 

inelastic string, spirit level indicator, Ampheel assembly and a fixed support. The interfacing shaft of 

Ampheel assembly is held by the gripper of UR10e manipulator keeping the axis horizontal. One end 

of an inelastic string is attached to the Ampheel in tangential direction as show in Fig. 20 (a) while 

the other end is attached to the digital spring gauge which is hooked to the fixed support. The robot 

gripper is then moved upward vertically till the spring gauge displays load more than 5 kg. It is evident 

from Fig. 20 (b) that the Ampheel assembly is safe in cantilever bending till the radial loading of 5.450 

kg (~ 54.5 N) which produces 54.5 kg-cm torque on the interfacing shaft. 

Now to check the bending strength, the inelastic string is attached radially to the Ampheel as 

shown in Fig. 20 (c) and the same procedure is repeated. From Fig. 20 (d) it is seen that the Ampheel 

assembly is able to withstand the 5.290 kg (~52.9 N) of radial load. Further to estimate the failure 

strength of the interfacing shaft, the UR10e is further moved upward to increase the load on the 

assembly till the failure. The interacting shaft breaks at 12.38 kg which is almost 123.8 N as shown in 

Fig. 20 (e). It is also seen that the shaft breaks at the area which is identified as weaker section from 

FEA simulation i.e. the intersection of shaft body and the cylindrical protrusions.  
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 Experimental setup (a) initial set up for tangential loading test, (b) tangential loading of more than 5 

kg, (c) initial set up for radial loading, (d) radial loading of more than 5 kg 

4. Conclusion 

Present research work delves into the intricate realm of conceptualization and optimization of a 

bioinspired amphibious locomotion mechanism for mobile robot. Through a comprehensive 

exploration of existing literature, conceptual frameworks, and innovative design strategies, the key 

principles governing the integration of terrestrial and aquatic locomotion systems have been 

elucidated. Out of all amphibious animals, the aquatic locomotion mechanism of fresh water turtle is 

found to be more relevant to incorporate in the proposed design. The major contribution of the present 

research work is the development of an innovative bioinspired amphibious locomotion mechanism 

called “Ampheel” which is equipped with soft actuators to mimic the aquatic locomotion of fresh 

water turtle. The distinguished feature of the Ampheel is abstraction of soft pneumatic actuator bio-

inspired from the legs of the turtle which extend and retract from the body as well as provide rowing 

action to locomote in water. Ampheel utilizes the wheel rolling action for terrestrial locomotion while 

for aquatic setting it uses the rowing action of extended soft pneumatic actuators generated by rotation 

of the Ampheel and thus integrate both terrestrial and aquatic locomotion by single driving system. 

Topology optimization has been conducted to reduce the weight of the initial design of Ampheel and 

a significant weight reduction of 64.7% is achieved which reinforces the efficiency and effectiveness 

of the design improvement. The interfacing shaft is designed in a way such that it powers the Ampheel 

for rotational motion and also facilitates the soft pneumatic actuator with supply of air flow during the 

rotational motion of Ampheel. The proposed Ampheel is topologically optimized design. The 
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Ampheel assembly is experimentally tested for bending and torsional loading and found safe till the 

designed load of 50 N. The bending strength of the interfacing shaft is also derived experimentally by 

destructive testing. The FEA simulation results and the experimental observations strengthen the 

proposed design of Ampheel to be applied on the field. The proposed Ampheel utilizes the rolling 

action of wheel for terrestrial locomotion and hence struggle to travel on the terrain with pick-valley. 

Despite of the limitation of wheel, Ampheel is advantageous in amphibious locomotion using single 

driving system for both the environment effectively and efficiently.  

Further experimental investigation of the thrust force produced by Ampheel while moving in 

aquatic environment with extended soft actuator can be considered as scope of extension of present 

study. Also, the structural and geometrical optimization of soft pneumatic actuator to improvise the 

axial expansion for enhancing the aquatic motion characteristics will be another interesting extension 

of this study. The proposed design of Ampheel contributes to advancing the capabilities of mobile 

robots in traversing diverse environments and widen the scope of further research in multimodal 

locomotion mechanism for mobile robots. 
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