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 Scholars worldwide have shown considerable interest in the industrial 

sector, mainly due to its abundant resources, which have facilitated the 

adoption of conveyor belt technologies like Robotic Arm-Based 

Conveyor Belts (RACBs). RACBs rely on four primary movements: (i.e., 

joint, motor, gear, and sensor), which can have a significant impact on the 

overall motions and motion estimation. To optimize these operations, an 

assistive algorithm has been developed to enhance the effectiveness of 

motion by achieving favorable gains. However, each motion requires 

specific criteria for Fractional Order Proportional Integral Derivative 

(FOPID) controller gains, leading to various challenges. These challenges 

include the existence of multiple evaluation and selection criteria, the 

significance of these criteria for each motion, the trade-off between 

criterion performance for each motion, and determining critical values for 

the criteria. As a result, the evaluation and selection of the Proposed Jaya 

optimization algorithm for RACB motion control becomes a complex 

problem. To address these challenges, this study proposes a novel 

integrated approach for selecting the Jaya optimization algorithm in 

different RACB motions. The approach incorporates two evaluation 

methods: the Nonlinear Autoregressive Moving Average with exogenous 

inputs (NARMA-L2) controller for Neural Network (NN) weighting of 

the criteria, and the Adaptive Neuro-Fuzzy Inference System (ANFIS) for 

selecting the Jaya optimization algorithm. The approach consists of three 

main phases: RACB-based NARMA-L2 Controller Identification and 

Pre-processing, Development of NARMA-L2 controller-based 

NARMA(L2)-FO(ANFIS)PD-I, and Evaluation of FOPID criteria based 

on JOA. The proposed approach is evaluated based on NARMA(L2)-

FO(ANFIS)PD-I that given 0.4074, 0.3156, 0.3724, 0.1898 and 0.2135 

for K_p_joint, K_i_motor, K_d_sensor, λ_gear, and µ_N respectively, 

which verifies the soundness of the proposed methodology. 
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1. Introduction 

Recently, robotic arm has been taking a lot of interest in most countries and others worldwide. 

Thus, exploring surround current world and understanding what insights sort can be reached by 

their interest have become important [1]. The importance is not surprises that given the facts that 

most of Robotics Arms with Conveyor Belts (RACBs) are composed of joints, sensors, gears, and 

motors, were importance for move objects from a point to another, manufacturing facility, and 

production line purposes. From a viewpoint, the robotic arm performs a precise movement toward 

the behavior of end-effectors, in turn can benefit most areas in research and Scientifics community, 

via producing insights and valuable knowledges in areas of sciences [2]. However, manages several 

types of objects within the suction cups, grippers, and specialized tools. Parts of object detections 

were the races between countries for develop objects manipulator technology that can detect and 

locate various tasks on the conveyor belts, pick, and place operations. RACBs were first invented 

in 1954 at an robots and industrialization by George Devol in the Italy [3]. RACBs are widely 

found in various industries, such as packaging, warehousing, logistics, and manufacturing [4]. 

These arms have become popular for productivity, efficiency, and accuracy by automatic repetitive 

tasks are fundamentals for reducing, manual labor and production process to the improvement [5]. 

The RACBs integration had impact on various industries, leading to increased productivity, 

flexibility, and efficiency in industrials processes. The key aspects towards the industries, and 

technologies such, efficiency within automation, flexibility, safety, advancement in kinematics, 

innovations issues, industry adoption 4.0, and connectivity. In addition, the technologies 

development in the industries which vary depends on the application, and specific sector, the 

RACBs integration has been significant process improvement and a significant automation driver 

in various industries. 

RACBs operate by relying on four major points, known as equipment, including joints, 

sensors, gears, and motors [6]. In addition to the fundamental equipment involved, RACBs 

movements depend on the control coordination called “Dimensions on Equipment Control” [7]. 

However, in RACBs equipment, significant attention should be paid to the available gains that 

could adverse effect the RACBs movements and the motion estimation. Some scientists prioritize 

joints and sensors while others depend on gears and motors and four main motions on the essential 

of their needs, i.e., whether for going down to handle the cube or climbing for moving the cube to 

the other sides [8]. Given the important of RACBs motions, many scholars have attempted to 

enhance methods and modellings contributed to RACBs motions [9]. Moreover, recent realization 

from the literatures exposed that most problems should be considered, given the obtainable of most 

methods in RACBs optimization. Those methods mainly purposes are for reaching appropriate 

gains via the FOPID controller, ANFIS controller, and NARMA-L2 controller. The challenges are 

available in a reality scenario, RACBs motions vary hence, the appropriate models, and methods 

employed also differ due to the distinct measurements associated with each motion, referred to as 

FOPID gains [10]. The FOPID gains play a vital role in the analysis of RACBs motion, and as a 

result, significant research efforts have been dedicated to obtaining the most optimal gains. 

However, there are notable challenges in dealing with the variations and differences in gains. These 

variations can have a significant impact, particularly considering the different priorities and levels 

of importance associated with RACBs motions. A prime illustration of this is evident when 

considering a motion where an RACBs is oriented downwards to handle a cube. In such scenarios, 

the necessary gains and their respective importance levels vary depending on the motion's joint 

directionality and in relation to the motors, gears, and sensors used to measure the deviation of the 

rotation axis [11]. 

However, RACBs motion encounters certain issues, such as the significance of gains and the 

potential conflicts that arise when utilizing these gains in RACBs motions. For instance, there 

exists an inverse relationship between the first gain and the latter, where an increase in one 

corresponds to a decrease in the other. Another significant issue pertains to the movement motions 

within the RACBs during rotation. To address these challenges, optimization, ANFIS, and 
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NARMA-L2, are currently being used as algorithms, methods, and controls for tuning the FOPID 

controller to obtain optimal values. 

The utilization of optimization algorithms allows for the application of cost function analysis 

in various scientific domains. In the context of RACBs, these algorithms facilitate the tuning of 

FOPID controller values, enabling the search for improved parameter configurations. Optimization 

techniques are applied to control the four primary motions of RACBs [12]. Numerous studies have 

addressed and presented works focusing on the utilization of various optimization algorithms with 

RACBs. Each of these techniques relies on its unique mathematical equations and estimated 

parameters, considering different values to be taken into account [13]. The optimization algorithm 

is primarily employed to control the movement motions of RACBs. These algorithms measure and 

adjust the selected areas between the handled cube on the right and the handled cube on the left. 

The right arm or left arm of the RACBs is determined based on the motion's directionality.  

ANFIS is utilized within the internal components of FOPID gains in RACBs to optimize and 

fine-tune their values. By employing ANFIS, the fuzzy inference system dynamically adapts and 

adjusts the FOPID gains in response to the inputs and system dynamics of RACBs. ANFIS 

harnesses the strengths of both fuzzy logic and neural networks to create a hybrid model that 

effectively learns and optimizes the FOPID gains. This integration allows ANFIS to intelligently 

modify the parameters of the FOPID controller, thereby enhancing its performance and improving 

the control of RACBs motions. Using ANFIS in the FOPID controller for RACBs offers numerous 

benefits. Firstly, ANFIS enables the controller to adapt and adjust its parameters based on inputs 

and system dynamics, ensuring effective responses to system changes and uncertainties. 

Additionally, ANFIS optimizes parameter tuning through its hybrid model, combining fuzzy logic 

and neural networks, resulting in more accurate and suitable parameter values that enhance control 

and efficiency in RACBs motions. Moreover, ANFIS enhances robust control by fine-tuning 

FOPID gains for improved tracking and stabilization, even in the presence of disturbances. The 

integration of ANFIS also enables adaptive control, allowing the controller to dynamically adjust 

parameters in real-time to varying conditions, ensuring optimal performance across different 

operating scenarios [14]. 

NARMA-L2, an artificial neural network-based approach, is integrated with the RACBs 

model to capture the system's nonlinear dynamics. The FOPID controller, alongside ANFIS, can be 

simulated within the NARMA-L2 framework to enhance control effectiveness for RACBs. The 

combined outcome of integrating the FOPID controller and ANFIS within NARMA-L2 offers 

several advantages. Firstly, it enables accurate modeling and control of the complex nonlinear 

behavior exhibited by RACBs. NARMA-L2 captures these nonlinearities, while the FOPID 

controller and ANFIS optimize control actions based on system inputs and dynamics. Moreover, 

the integration of the FOPID controller and ANFIS enhances control accuracy, resulting in 

improved tracking, stability, and precision in RACBs motions. Additionally, this combination 

facilitates adaptive control, allowing the system to dynamically adjust to changes and uncertainties 

in real-time. By combining the FOPID controller with ANFIS within the NARMA-L2 framework 

for RACBs, the resulting system benefits from accurate modeling, enhanced control accuracy, and 

adaptive control capabilities, leading to improved overall performance in controlling RACBs 

motions and the purpose of planning regarding whether to moving the RACBs towards the left or 

right direction. In this context, the selection of mechanisms and values for tuning can be 

determined by the enhancement using these techniques [15]. The main challenge arises when 

utilizing an optimization algorithm that relies on a single cost function, while each technique, such 

as NARMA-L2 and ANFIS, is evaluated based on a specific mathematical model for RACBs. This 

poses a difficulty in determining the optimal requirements for each technique to work in a high 

velocity and stability in motion results [16], How has the optimization process contributed to 

FOPID gains, and what does the current literature say about this topic. Many scientific studies have 

employed various optimization techniques for RACBs motions to explore their impact on controller 

gains [17]. 
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Numerous research studies have utilized optimization techniques to enhance the four major 

motions of RACB systems, (i.e., joint,motor, gear, and sensor). To provide an overview of the 

previous research in this area, Table 1 presents a summary of the collected information and the 

criteria employed for motion types across various optimization techniques.  

Table 1 illustrates the optimization techniques employed and the criteria utilized to enhance 

movement motions in RACBs (Robotic Arm Conveyor Belts). The table includes a total of seven 

optimization techniques, namely Conveyor Belt Based Pick and Place Application, Control 

algorithm [18], Non-Smooth Mechanics [19], Gauss-Newton Algorithm [20], Algorithmic 

Thinking [5], Conveyor Belt Based Pick and Place Application [21], and Artificial Bee Colony 

Algorithm [22]. The table demonstrates that diverse movement motions and controller gains have 

been applied to the criteria (G1, G2, G3, G4). Specifically, in the study by [23], self-tuning 

techniques (G1, G2, G3, G4) were utilized to enhance the joint and motor motion of RACBs. 

Similarly, employed G1, G2, G3, and G4 to develop the sensor, gear, and joint of the RACB [19], 

employed G1, G2, G3, and G4 to improve the motor, joint, and gear in RACBs [20], used G1, G2, 

and G3 to enhance the motion of the joint in RACBs. In the work by [5], self-tuned value sets were 

employed to develop sensor motion in RACBs, while [21] utilized all criteria (self-tuned value 

sets) to enhance motion, sensor, and gear in an RACB. Finally, [22] utilized criteria G1 and G2 to 

improve the motor motion of a robotics arm, based on many variations of estimated values on the 

RACB. The existing literature highlights the variation in criteria and the optimization techniques 

employed for RACB motion control. Consequently, there is a need for a more valuable solution 

that can effectively select the appropriate optimization algorithm for each criterion. This study aims 

to address this crucial gap by providing further analysis and an in-depth discussion of this major 

problem. It is importance notice that all four controller criteria significantly impact the RACBs 

system. The selection of control system parameters with a high proportional value (G1) results in a 

quick response time. However, an excessively high proportional value can lead to instability or 

oscillation. The integral term (G2) allows for faster error correction but may result in larger 

overshoots. Increasing the parameter size can reduce overshoot, but it would also decrease the 

overall response time. While the controller is linear, RACBs are inherently nonlinear due to other 

elements present. Table 1 demonstrates that various optimization methods have been proposed in 

the literature to address a wide range of RACB motion and route control scenarios, considering the 

key criteria discussed earlier. However, several prominent problems have emerged.   

Table 1.  Optimization techniques-based RACB studies 

 

Firstly, selecting and implementing the optimal values for optimization techniques in RACB 

motion routes is challenging due to the presence of multiple criteria. Secondly, determining the 

relative weights of each criterion is essential when deciding on an optimization algorithm. While 

not all criteria hold the same importance, they influence the choice of optimization technique. 

Thirdly, the trade-off between the efficiency of different values in optimization methods 

concerning various criteria poses a challenge. For instance, an increase in sensors may not always 

lead to a corresponding increase in motors. Negative correlations between factors must be 

considered during the selection process, as not all criteria can be optimized simultaneously. Lastly, 

Authors Type of Controller Techniques 
Controller Gains (G)  

𝐆𝟏/𝐊𝐩 𝐆𝟐/𝐊𝐢 𝐆𝟑/𝐊𝐝 𝐆𝟒/𝐍 

[5] Arduino Yun Algorithmic Thinking N/A N/A N/A N/A 

[18] Kinematic Controller Control algorithm 0.85 0.75 0.95 0.80 

[19] Ballistic Motion and Sliding Non-Smooth Mechanics 0.60 0.45 0.25 0.35 

[20] Cascaded-PID Controller Gauss-Newton Algorithm 0.52 0.037 0.74 N/A 

[21] Atmega328 Arduino  
Conveyor Belt Based Pick and 

Place Application 
N/A N/A N/A N/A 

[22] Embedded Controller Artificial Bee Colony Algorithm 0.01 0.99 N/A N/A 

[23] Low-Cost Embedded Controller 
Conveyor Belt Based Pick and 

Place Application 
N/A N/A N/A N/A 
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the critical value problem arises when a criterion's performance does not improve linearly with an 

increase or decrease in its value. Instead, there exists a threshold beyond which the performance is 

no longer considered optimal. This threshold significantly affects the motion path of RACBs, as the 

optimal motion control optimization method typically encompasses a range of values. Due to these 

four challenges, determining the best values for optimization methods in RACB motion control is a 

complex task. The current study aims to address this issue through the application of the Jaya 

Optimization Algorithm (JOA) based NARMA-L2-ANFIS for FOPID.  

The implementation of Robotic Arm-based Conveyor Belts (RACBs) presents numerous 

substantial contributions to the progress of the industrial sector: 

• Enhanced Efficiency and Productivity: RACBs streamline various functions within industrial 

operations, resulting in heightened efficiency and productivity. These robotic arms excel at 

handling repetitive and labour-intensive tasks, executing them with remarkable precision and 

speed, consequently accelerating production cycles. 

• Economic Benefits: By diminishing the reliance on manual labor and minimizing errors, 

RACBs yield substantial long-term cost savings in operational expenditures. They can operate 

continuously without experiencing fatigue, ensuring consistent output and long-term cost-

efficiency. 

• Elevated Quality Control: Equipped with sensors and cameras, RACBs perform real-time 

quality assessments of products. They are adept at identifying defects and anomalies, thereby 

guaranteeing that only top-tier items reach the market. This, in turn, reduces wastage and 

rework expenses. 

• Augmented Safety: Robotic arms possess the capability to handle hazardous materials and 

execute perilous tasks within industrial settings, thus shielding human workers from potential 

risks. This significantly enhances workplace safety and mitigates the occurrence of accidents. 

• Flexibility and Adaptability: RACBs are often programmable and can swiftly adapt to varying 

tasks and product specifications. This adaptability empowers manufacturers to respond 

promptly to shifts in market demands and customize products more efficiently. 

• Optimal Space Utilization: Robotic arms are designed to operate within confined spaces and 

are engineered to maximize space utilization. This attribute proves especially invaluable in 

industries where available space is a premium resource. 

• Unwavering Consistency and Precision: RACBs exhibit unparalleled precision and 

consistency across a spectrum of tasks, including material handling, welding, painting, and 

assembly. This unwavering precision significantly elevates product quality and reliability. 

• Data Gathering and Analysis: Many RACBs are furnished with sensors that collect data during 

their operations. This data can subsequently be subjected to analysis, pinpointing areas for 

process optimization, predictive maintenance strategies, and overarching operational 

enhancements. 

• Competitive Edge: Enterprises that invest in RACB technology gain a distinct competitive 

advantage within their respective markets. They can produce high-Caliber products more 

efficiently, respond promptly to market fluctuations, and effectively meet the demands of 

discerning customers. 

• Sustainability: RACBs can be programmed to optimize resource consumption, including 

energy and materials, thus contributing to sustainable manufacturing practices and mitigating 

their environmental footprint. 

The incorporation of RACB represents a pivotal step forward for the industrial sector. It leads 

to heightened operational efficiency, substantial cost savings, elevated quality standards, enhanced 

workplace safety, adaptability to market changes, efficient space utilization, and ultimately, 
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sustainable manufacturing practices, all of which contribute to industry advancement and 

competitiveness. 

In this paper, the evaluation and selection problem of optimal values for RACBs motion 

control is addressed through the utilization of the Jaya Optimization Algorithm (JOA) as a novel 

approach. JOA is an extension of optimization theory that aims to recover every problem with a 

decision leading to the desired goal. It is a systematic approach that considers the inherent tensions 

between evaluation criteria and the range of possible decisions faced by individuals. The JOA 

algorithm incorporates control-tuning procedures to assist in the planning, structure, and problem-

solving stages of selection. It relies on metaheuristics and other forms of automated decision-

making. By utilizing a Simulink file, JOA can process a case where the significance of evaluation 

criteria is determined. While certain optimization techniques such as Eagle Strategy-Particle 

Swarm Optimization (ES-PSO) [24] and Control Algorithm (CA) [25], are commonly found in the 

research literature, there remains a theoretical void despite their usage. This study employs the JOA 

to calculate the importance weights of criteria for controller gain selection and evaluation in the 

movement of robotic arm-based conveyor belts (RACBs), aiming to prevent instability issues. The 

JOA considers a subjective-based robust selection method in the Simulink environment, 

considering group controller gains or criterion selection approaches when making a final decision. 

It addresses trade-offs, important value determination, and evaluation criterion trade-offs through 

the application of cost-benefit analysis. The main contribution and novelty of this study can be 

summarized as follows: 

a) Optimized RACB motions using FOPID & JOA for efficiency. 

b) Modelled robotic arm conveyor with JOA & NARMA-L2-FO-ANFIS-PD-I control. 

c) Validated JOA with NARMA-L2-FO-ANFIS-PD-I gains for diverse RACB motions. 

The paper is divided into the following sections: Section 2 discusses the kinematics 

mechanism of RACB and RACB blocks on MATLAB-Simulink. Section 3 presents the three 

phases of methodology where RACB based NARMA-L2 controller identification and pre-

processing, development of NARMA-L2 controller-based NARMA(L2)-FO(ANFIS)PD-I, and 

evaluation of FOPID criteria based JOA are all discussed. Section 4 presents the results and 

discussion, Section 5 presents the study implications of this article, Section 6 presents the 

conclusion of the following article.  

2. Kinematics Mechanism of RACB 

A robotic arm integrated with conveyor belts combines rotational and translational motions to 

manipulate objects. The arm consists of interconnected joints and links, allowing for precise 

control of its end effector's position. The conveyor belts introduce an additional element of motion 

by transporting objects along a predetermined path, facilitating interaction with the objects. To 

mathematically describe the system's kinematics, the forward kinematics equation is employed. 

This equation establishes a relationship between the joint angles or positions of the robotic arm and 

the position and orientation of the end effector within the workspace. The specific form of the 

forward kinematics equation depends on the type and configuration of the robotic arm [26]. 

Different arm types, such as Cartesian, cylindrical, or spherical arms, have their own distinct 

forward kinematics equations, which utilize trigonometric functions, matrix transformations, or 

other mathematical representations to determine the end effector's pose based on the joint values. 

The incorporation of conveyor belts introduces a time-dependent aspect to the system. To 

comprehensively describe the motion of objects on the conveyor belts and their interaction with the 

robotic arm, the kinematic mechanism of the system integrates both joint motion and conveyor belt 

motion. Mathematical equations, such as the forward kinematics equation, provide a framework for 

representing the relationship between joint values and the position and orientation of the end 

effector. Fig. 1 illustrates the concept of motion in a three-link planar arm [27]. 
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Fig. 1. Planar arm based three links [27] 

In Fig. 1, we have a three-link planar arm where the frames of the links are depicted. To 

simplify the design, we have chosen the revolute axes to be parallel. As a result, we aligned all the 

axes xi along the direction of the relative links, with x0 being arbitrarily chosen. Additionally, all 

the axes lie in the plane defined by (x0, y0). By adopting this configuration, the parameter di 

becomes zero, and the angles between the axes xi directly represent the joint variables. Given that 

all the joints in this system are revolute, the homogeneous transformation matrix defined in 

equation (1) possesses identical structure for every joint as present in Fig. 2 [28], namely, 

 

Ai
i−1(ϑi) =

[
 
 
 
 
ci −si   0  aici

si  ci   0  aisi

0  0   1  0

0  0   0  1 ]
 
 
 
 

 i = 1, 2, 3. (1) 

 

 

Fig. 2. Arm based parallelogram [28] 
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The direct computation in kinematics function as depicts in equation (2): 

 

T3
0(q) = A1

0A2
1A3

2

[
 
 
 
 
c123 −s123   0  a1c1+a2c12+a3c123

s123 c123   0  a1s1+a2s12+a3s123

0  0   1                          0

0  0   0                          1 ]
 
 
 
 

 (2) 

Given that q is a vector represented as q = [ϑ1 ϑ2 ϑ3] T, it is important to note that the unit 

vector 𝑧3
0 in Frame 3 aligns with z0 = [0 0 1] T, this alignment is due to the revolute joints being 

parallel to the z0 axis. Consequently, 𝑝𝑧 equals zero, and all three joints contribute to determining 

the end-effector position within the structure's plane. It is essential to highlight that Frame 3 and the 

end-effector frame (Fig. 2) do not coincide because the resultant approach unit vector aligns with 

𝑥3
0  rather than 𝑧3

0. Assuming both frames share the same origin, a constant transformation can be 

established. 

 

𝑻𝒆
𝟑 =

[
 
 
 
 

0 0   1  0

0 1   0  0

−1 0   0  0

0 0   0  1 ]
 
 
 
 

 (3) 

A constant transformation is required, with 𝑛 aligned within 𝑧0. In Fig. 3 [29], we observe an 

anthropomorphic arm that shares similarities with a two-link planar arm but includes an additional 

rotation around a plane's axis. This implies that the parallelogram arm could be utilized as a 

substitute for the two-link planar arm, a configuration often seen in industrial robots with an 

anthropomorphic design. The figure depicts the frames of the arm's links. Frame 0's origin is 

chosen at the intersection of 𝑧0 and 𝑧1, where 𝑑1 equals zero. Additionally, 𝑧1 and 𝑧2 are parallel, 

and the selection of axes 𝑥1 and 𝑥2 follows the same pattern as the two-link planar arm. The DH 

parameters for this configuration are provided in Table 2 [29]. 

 

Fig. 3. Arm based anthropomorphic [29] 

Table 2.  DH parameters based anthropomorphic arm [29] 

Link 𝒂𝒊 𝜶𝒊 𝒅𝒊 𝝑𝒊 
1 0 π/2 0 ϑ1 

2 𝑎2 0 0 ϑ2 

3 𝑎3 0 0 ϑ3 
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The matrices (2) represent the homogeneous transformation for individual joints. 

 

𝐴1
0(𝜗1) =

[
 
 
 
 
𝑐1 0   𝑠1  0

𝑠1 0  −𝑐1  0

0 1   0  0

0 0   0  1 ]
 
 
 
 

 (4) 

 

𝐴𝑖
𝑖−1(𝜗𝑖) =

[
 
 
 
 
 
𝑐𝑖 −𝑠𝑖   0  𝑎𝑖𝑐𝑖

𝑠𝑖 𝑐𝑖  0  𝑎𝑖𝑠𝑖

0 0   1  0

0 0   0  1 ]
 
 
 
 
 

 𝑖 = 2,3. (5) 

When calculating the direct kinematics function, as shown in equation (2), the following result 

is obtained: 

 

𝑇3
0(𝑞) = 𝐴1

0𝐴2
1𝐴3

2

[
 
 
 
 
 

𝑐1𝑐23 −𝑐1𝑠23   𝑠1  𝑐1(𝑎2𝑐2+𝑎3𝑐23)

𝑠1𝑐23 −𝑠1𝑠23   −𝑐1  𝑠1(𝑎2𝑐2+𝑎3𝑐23)

𝑠23       𝑐23           0            𝑎2𝑠2+𝑎3𝑠23

0          0             0                      1        ]
 
 
 
 
 

 (6) 

Given the vector 𝑞 =  [𝜗1 𝜗2 𝜗3]𝑇, it is important to note that z3 is aligned with z2. 

Consequently, Frame 3 does not align with the end-effector frame depicted in Fig. 4. To establish 

the appropriate alignment, a constant transformation would be required [30]. 

 

Fig. 4. Wrist based spherical [30] 

In Fig. 5, after computing the direct kinematics function, the position and orientation of the 

end-effector frame can be expressed as follows, while keeping the other transformation matrices 

unchanged [31]: 

 

𝑝6 
0 = [

𝑎2𝑐1𝑐2 + 𝑑4𝑐1𝑠23 + 𝑑6(𝑐1(𝑐23𝑐4𝑠5+𝑠23𝑐5) + 𝑠2𝑠4𝑠5

𝑎2𝑠1𝑐2 + 𝑑4𝑠1𝑠23 + 𝑑6(𝑠1(𝑐23𝑐4𝑠5 + 𝑠23𝑐5) − 𝑐1𝑠4𝑠5

𝑎2𝑠2 − 𝑑4𝑐23 + 𝑑6(𝑠23𝑐4𝑠5 − 𝑐23𝑐5)
] (7) 

Then, 

 

𝑛6 
0 = [

𝑐1(𝑐23(𝑐4𝑐5𝑐6 − 𝑠4𝑠6) − 𝑠23𝑠5𝑐6 + 𝑠1(𝑠4𝑐5𝑐6+𝑐4𝑠6)

𝑠1(𝑐23(𝑐4𝑐5𝑐6 − 𝑠4𝑠6) − 𝑠23𝑠5𝑐6 − 𝑐1(𝑠4𝑐5𝑐6+𝑐4𝑠6)

𝑠23(𝑐4𝑐5𝑐6 − 𝑠4𝑠6) + 𝑐23𝑠5𝑐6

] (8) 
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𝑠6 
0 = [

𝑐1(−𝑐23(𝑐4𝑐5𝑠6 + 𝑠4𝑐6) + 𝑠23𝑠5𝑠6 + 𝑠1(−𝑠4𝑐5𝑠6+𝑐4𝑐6)

𝑠1(−𝑐23(𝑐4𝑐5𝑠6 + 𝑠4𝑐6) + 𝑠23𝑠5𝑠6 − 𝑐1(−𝑠4𝑐5𝑠6+𝑐4𝑐6)

−𝑠23(𝑐4𝑐5𝑠6 + 𝑠4𝑐6) − 𝑐23𝑠5𝑠6

] (9) 

 

 
𝑎6 

0 = [
𝑐1(𝑐23𝑐4𝑠5 + 𝑠23𝑐5) + 𝑠1𝑠4𝑠5

𝑠1(𝑐23𝑐4𝑠5 + 𝑠23𝑐5) − 𝑐1𝑠4𝑠5

𝑠23𝑐4𝑠5 − 𝑐23𝑐5

] (10) 

 

Fig. 5. Manipulator based DLR [31] 

When setting d6 to zero, the position of the intersection of the wrist axes can be determined. In 

this scenario, the vector p0 mentioned in equation (7) corresponds to the vector 𝑝3 
0  in the case of the 

anthropomorphic arm described in equation (6). d4 represents the length of the forearm (a3), and in 

Fig. 5, axis x3 is rotated by π/2 compared to axis x3 in Fig. 4. 

In Fig. 6, we are considering the parallelogram arm. Due to the presence of a closed chain, we 

initially consider an equivalent open-chain arm with a tree structure. Along one branch of the tree, 

let's denote the distances of the centers of mass of the three links as ℐ1, ℐ2, and ℐ3, and along the 

other branch, the distance of the center of mass of the single link as ℐ4''. Similarly, the masses of 

the respective links are denoted as 𝑚ℐ1, 𝑚ℐ2, 𝑚ℐ3, and 𝑚ℐ1 '', and their moments of inertia relative to 

their centers of mass are denoted as 𝐼ℐ1, 𝐼ℐ2, 𝐼ℐ3,, and 𝐼ℐ1′′
. For simplicity, we neglect the 

contributions of motors. By using the chosen coordinate frames, we can compute the Jacobians in 

equations (7) to (8), (9), and (10) [32]. 

 
𝐽𝑝
(ℐ1′)

= [
−ℐ1′𝑠1′ 0 0
ℐ1′𝑐1′ 0 0

0 0 0
] 𝐽𝑝

(ℐ2′)
= [

−𝑎1′𝑠1′ − ℐ2𝑠1′2′ −ℐ2′𝑠1′2′ 0
𝑎1′𝑐1′ + ℐ2′𝑐1′2′ ℐ2𝑐1′2′ 0

0 0 0
] (11) 

 
𝐽𝑝
(ℐ3′)

= [
−𝑎1′𝑠1′−𝑎2′𝑠1′2′ −  ℐ3′𝑠1′2′3′ −𝑎2′𝑠1′2′−ℐ3′𝑠1′2′3′ −ℐ3′𝑠1′2′3′

𝑎1′𝑐1′ + 𝑎2′𝑐1′2′ + ℐ3′𝑐1′2′3 𝑎2′𝑐1′2′+ℐ3′𝑐1′2′3′ −ℐ3′𝑐1′2′3′

0 0 0

] (12) 

 
𝐽𝑝 
0 = [

−ℐ1′′𝑠1′′

ℐ1′′𝑐1′′

0
] (13) 

 
𝐽0
(ℐ1′)

= [
0 0 0
0 0 0
1 0 0

]  𝐽0
(ℐ2′)

= [
0 0 0
0 0 0
1 1 0

]  𝐽0
(ℐ3′)

= [
0 0 0
0 0 0
1 1 1

] (14) 
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Then, 

 
𝐽0
(ℐ1′′)

= [
0
0
1
] (15) 

 

Fig. 6. Degree-Of-Freedom (DOF) based parallelogram [32] 

According to equation (8), (9), and (10), the inertia matrix based virtual arm consisting of 

joints 𝜗1, 𝜗2, and 𝜗3 can be expressed as follows [33]: 

 

 𝐵′(𝑞′) = [

𝑏1′1′(𝜗2′ , 𝜗3′) 𝑏1′2′(𝜗2′ , 𝜗3′) 𝑏1′3′(𝜗2′ , 𝜗3′)

𝑏2′1′(𝜗2′ , 𝜗3′) 𝑏2′2′( 𝜗3′) 𝑏2′3′( 𝜗3′)

𝑏3′1′(𝜗2′ , 𝜗3′) 𝑏3′2′( 𝜗3′) 𝑏3′3′

] (16) 

 𝑏1′1′ = 𝐼ℐ1′ + 𝑚ℐ1′ℐ1′
2 + 𝐼ℐ2′ + 𝑚ℐ2′(𝑎1′

2 + ℐ2′
2 + 2𝑎1′ℐ2′𝑐2′) 

+𝐼ℐ3′ + 𝑚ℐ3′(𝑎1′
2 + 𝑎2′

2 + ℐ3′
2 +2𝑎1′𝑎2′𝑐2′+2𝑎1′ℐ3′𝑐2′3′ + +2𝑎2′ℐ3′𝑐3′) 

(17) 

 𝑏1′2′ = 𝑏2′1′ = 𝐼ℐ2′ + 𝑚ℐ2′(ℐ2′
2 + 𝑎1′ℐ2′𝑐2′) 

+𝐼ℐ3′ + 𝑚ℐ3′(𝑎2′
2 + ℐ3′

2 + 𝑎1′𝑎2′𝑐2′ + 𝑎1′ℐ3′𝑐2′3′ + 2𝑎2′ℐ3′𝑐3′) 
(18) 

 𝑏1′3′ = 𝑏31 = 𝐼ℐ3′ + 𝑚ℐ3′(ℐ3′
2 + 𝑎1′ℐ3′𝑐2′3′ + 𝑎2′ℐ3′𝑐3′) (19) 

 𝑏2′2′ = 𝐼ℐ2′ + 𝑚ℐ2′ℐ2′
2 + 𝐼ℐ3′ + 𝑚ℐ3′(𝑎2′

2 + ℐ3′
2 + 2𝑎2′ℐ3′𝑐3′) (20) 

 𝑏2′3′ = 𝐼ℐ3′ + 𝑚ℐ3′(ℐ3′
2 + 𝑎2′ℐ3′𝑐3′) (21) 

 𝑏3′3′ = 𝐼ℐ3′ + 𝑚ℐ3′ℐ3′
2  (22) 

2.1. RACB Blocks on MATLAB-Simulink 

The RACB model contains two major components: input control and arm, their 

responsibilities for convert gripper, Logical Link Control (LLC) to I/O Belt, and I/O Belt to the 

normalized bus within joint commands for the arm trajectory and finger position [33]. This model 

is designed using six transforms of arm; 𝐵𝑎𝑠𝑒, 𝑃𝑖𝑣𝑜𝑡, 𝐵𝑖𝑐𝑒𝑝, 𝐹𝑜𝑟𝑒𝑎𝑟𝑚,𝑊𝑖𝑟𝑠𝑡, 𝑎𝑛𝑑 𝐺𝑟𝑖𝑝𝑝𝑒𝑟 and 

revolution (estimation of degrees) for each motion. In addition, the main conveyors environment 

was applied for handling to move load box (cube) [34]. In final, the 𝐺𝑟𝑖𝑝𝑝𝑒𝑟 𝐹𝑜𝑟𝑐𝑒 𝐷𝑎𝑚𝑝𝑒𝑟 in 
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terms of apply 6-DOF and damping force between double frames with a certainly range 

(𝑃𝑥, 𝑃𝑦, 𝑎𝑛𝑑 𝑃𝑧) used for transform sensor are depicts in Fig. 7. 

 

Fig. 7. Overall input control and arm model on MATLAB-Simulink 

The input control for the RACB to be understandable by arm environment was contained by 

𝑏𝑒𝑙𝑡 𝑖𝑛 − 𝐻𝑜𝑚𝑒 − 𝑏𝑒𝑙𝑡 𝑜𝑢𝑡, such as LLC and joint commands. LLC components convert the belts 

I/O programmed consideration to belts I/O motions [35]. Moreover, way and grip components were 

converting the way and grip programmed consideration to a bus for both trajectory and position 

selection. The aim is for combining the considerations of motions, and trajectory, position selection 

on belts I/O; these components were used for motion, position, and trajectory to achieve the 

formatting for the RACB environment within 6-DOF gripper force  [36] as depict in Fig. 8 part (a) 

LLC component to convert all programmed belts and joint commands on RACB, Fig. 8 part (b) 

Joint commands to convert both way, and grip in a bus on RACB, and Fig. 8 part (c) Internal block 

of a programmed relation in LLC component, Fig. 9 part (a) Environment and directivity motions 

on RACB, Fig. 9 part (b) Conveyors, Load Box (Cube), and gripper damper on RACB, Fig. 9 part 

(c) Belt I/O, and angles of transform on RACB, and Fig. 9 part (d) 6-DOF measured for gripper 

force damper on RACB. 

 
(a) LLC component to convert all programmed belts and joint commands on RACB 

 
(b) Joint commands to convert both way, and grip in a bus on RACB 

 

Select Finger Position 

Scope 
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(c) Internal block of a programmed relation in LLC component 

Fig. 8.  LLC components and joint commands on MATLAB 

 
(a) Environment and directivity motions on RACB 

 
(b) Conveyors, load box (cube), and gripper damper on RACB 



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

275 
Vol. 4, No. 1, 2024, pp. 262-290 

  

 

Abdullah Fadhil Mohammed (Selection and Evaluation of Robotic Arm-based Conveyor Belts (RACBs) Motions: 

NARMA(L2)-FO(ANFIS)PD-I based Jaya Optimization Algorithm) 

 

 
(c) Belt I/O, and angles of transform on RACB 

 
(d) 6-DOF measured for gripper force damper on RACB 

Fig. 9. Arm components internal block model on MATLAB 

3. Methodology 

This section is split into three phases, as described in Fig. 10. The first phase is Robotic Arm 

based Conveyor Belts (RACB) and NARMA-L2 controller concerning identification and pre-

processing. The development of NARMA-L2 controller-based NARMA(L2)-FO(ANFIS)PD-I 

including, FOPID Criteria based ANFIS, and ANFIS (MF) Data are formulated in the second 

phase. The third phase uses an optimization process to evaluate the Jaya optimization algorithm 

based on FOPID criteria, were extracted from the evaluation of FOPID criteria based JOA. 

3.1. Phase 1: RACB based NARMA-L2 Controller Identification and Pre-Processing 

This phase identifies RACB based NARMA-L2 controller concerning one major section: the 

NARMA-L2 controller tuning involve; structural design of NARMA-L2 controller. 

3.1.1. NARMA-L2 Controller Tuning 

The NARMA-L2 controller entails the determination of suitable parameter values, including 

the coefficients for the Auto-Regressive (AR) and Moving Average (MA) components, to achieve 

optimal control performance. The major instructions for tuning the NARMA-L2 controller: 
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Fig. 10. Evaluation and selection of methodology phases 

Collect input-output data from the target system to be controlled [37]. This data will be 

utilized for training and evaluation purposes during the tuning process known as data acquisition. 

Determine the appropriate structure for the NARMA-L2 model, including the consideration of past 

input and output terms within the AR and MA components. The selection should be based on the 

system's dynamics and complexity-based structure selection. Divide the collected data into separate 

training and validation sets. The training set is employed to estimate the model parameters, while 

the validation set is used to assess the performance of the tuned controller depending on Training 

and validation. Utilize suitable methods such as least squares, gradient descent, or optimization 

algorithms to estimate the model parameters [38]. The primary objective is to minimize the 

prediction error between the actual output and the predicted output of the NARMA-L2 model that 

estimates each parameter. According to the evaluation issue, the performance of the tuned 

NARMA-L2 controller using the validation data-based evaluation. In Iterative refinement, 

iteratively refine the model parameters based on the results of the performance evaluation. This 

may involve adjusting the number of past input and output terms, modifying the nonlinear 

functions within the AR and MA components, and applying regularization techniques to prevent 

overfitting. In analysis of robustness, Assess the robustness of the tuned NARMA-L2 controller 

against disturbances, noise, or uncertainties within the system. The equations (23), and (24) for 

each component can be represented as follows: 

 𝑦(𝑡1) =  𝑓(𝑦(𝑡 − 1), 𝑦(𝑡 − 2), . . . , 𝑦(𝑡 − 𝑛), 𝑢(𝑡 − 1), 𝑢(𝑡 − 2), . . . , 𝑢(𝑡 − 𝑚)) (23) 

 𝑦(𝑡2) =  𝑔(𝑢(𝑡 − 1), 𝑢(𝑡 − 2), . . . , 𝑢(𝑡 − 𝑚)) (24) 

Where: 𝑦(𝑡1) represents the current output of the system. 𝑓() is a nonlinear function that 

models the relationship between the past output values (𝑦(𝑡 − 1), 𝑦(𝑡 − 2), . . . , 𝑦(𝑡 − 𝑛)) and the 

past input values (𝑢(𝑡 − 1), 𝑢(𝑡 − 2), . . . , 𝑢(𝑡 − 𝑚)). 𝑛 is the number of past output terms 

considered in the autoregressive model. 𝑚 is the number of past input terms considered in the 

autoregressive model [39]. 

While: 𝑦(𝑡2) represents the current output of the system. 𝑔() is a function that models the 

relationship between the past input values (𝑢(𝑡 − 1), 𝑢(𝑡 − 2), . . . , 𝑢(𝑡 − 𝑚)) and the current 

output. 𝑚 is the number of past input terms considered in the moving average model [40]. In 

addition, NARMA-L2 controller for RACB is classified into multiple blocks, as depicted in Fig. 

11. 

3.2. Phase 2: Development of NARMA-L2 Controller-based NARMA(L2)-FO(ANFIS)PD-I 

The NARMA-L2 controller is a type of nonlinear controller that uses a neural network to 

model the dynamic behavior of the system and generate the control signal. When combined with 



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

277 
Vol. 4, No. 1, 2024, pp. 262-290 

  

 

Abdullah Fadhil Mohammed (Selection and Evaluation of Robotic Arm-based Conveyor Belts (RACBs) Motions: 

NARMA(L2)-FO(ANFIS)PD-I based Jaya Optimization Algorithm) 

 

FOPID criteria and ANFIS, it creates a hybrid intelligent control system that incorporates fractional 

order control [41]. The NARMA-L2 controller can be formulated by equation (25): 

 𝑢(𝑡) =  𝐹(𝑦(𝑡), 𝑦(𝑡 − 1), . . . , 𝑦(𝑡 − 𝑛 + 1), 𝑢(𝑡 − 1), . . . , 𝑢(𝑡 − 𝑚 + 1)) (25) 

When: 𝑢(𝑡) is the control signal at time t, 𝑦(𝑡) represents the system output at time t, 𝑛 is the 

number of past output samples used for modeling the system dynamics, 𝑚 is the number of past 

control samples used for modeling the system dynamics, 𝐹 is a nonlinear function or a neural 

network that captures the system dynamics. To incorporate the FOPID criteria and ANFIS into the 

NARMA-L2 controller, we can modify the function 𝐹 to include the FOPID controller structure 

and use ANFIS to optimize the parameters. The FOPID structure can be formulated by equation 

(25): 

 

Fig. 11. Structural design of NARMA-L2 controller 

 
𝑢(𝑡) =  𝐾𝑝 ∗  𝑒(𝑡) + 𝐾𝑖 ∗

𝐷{𝜆𝑖}𝑒(𝑡)

𝐷𝑝
𝜆

+ 𝐾𝑑 ∗
𝐷𝑑

𝜆𝑒(𝑡)

𝐷𝑑
𝜆

 (26) 

Where e(t) is the error, and D^λ represents the fractional derivative, and integral operator. 

The ANFIS framework is used to train the parameters of the FOPID controller based on the FOPID 

criteria. It involves defining fuzzy if-then rules that map the input error (e(t)) to the output control 

signal (u(t)). The parameters of these fuzzy rules are learned through a combination of forward 

and backward passes in the training process. The training data for ANFIS consists of input-output 

pairs, where the inputs are the error and possibly other relevant system variables, and the outputs 

are the control signals [42]. 

By combining the NARMA-L2 structure, the FOPID criteria, and ANFIS training, the 

resulting controller can capture the nonlinear dynamics of the system and incorporate fractional 

order control based on the specified criteria. This hybrid approach allows for improved control 

performance in systems with nonlinearities and variable order dynamics [43], according to the 

ANFIS, 20 I/O MFs, and 50 epochs were used to identify and train the adaptive neuro-fuzzy 

controller as depicts in  Fig. 12 part (a) FOPD-1 based ANFIS ((FO(ANFIS)PD-I)) Model on 

MATLAB, Fig. 12 part (b) ANFIS based 20 input MFs, Fig. 12 part (c) ANFIS based 20 output 

MFs, Fig. 12 part (d) FO(ANFIS)PD-I model based NARMA(L2) controller on MATLAB, and 

Fig. 12 part (e) NARMA(L2) controller associated with RACB model on MATLAB. 

3.3. Phase 3: Evaluation of FOPID Criteria based JOA 

This section depicts the optimization process based proposed Jaya Optimization Algorithm 

(JOA) with their processes and mathematical equations. In addition, the mechanism of calculation 

for a given algorithm was explained as follows: 

3.3.1. Optimization Process 

Optimization is the process of seeking the most favorable solution or maximizing/minimizing 

an objective function while working within a set of given constraints. It entails formulating a 
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mathematical model that accurately represents the problem and utilizing various methods to 

determine the optimal values for the decision variables. Let's consider a general optimization 

problem where we have a set of decision variables denoted as x =  (x₁, x₂, . . . , xn). The objective is 

to find the values of these variables that optimize the objective function f(x). Additionally, there 

might be constraints that restrict the values of the decision variables, expressed as gᵢ(x)  ≤
 0 for i =  1, 2, . . . , m. Mathematically, the optimization problem can be stated as follows [44]: 

Minimize (or maximize) f(x) subject to: gᵢ(x) ≤  0, for i =  1, 2, . . . , m x ∈  X 

Thus, X represents the feasible region, which denotes the set of values satisfying the 

constraints. To solve such problems, a range of optimization algorithms and techniques are 

available. One commonly used approach is employing gradient-based methods like gradient 

descent or Newton's method for unconstrained optimization problems. These methods utilize the 

gradient (partial derivatives) of the objective function to iteratively update the decision variables 

and converge towards the optimal solution. For instance, in the case of minimizing the objective 

function f(x) [45]. For constrained optimization problems, additional techniques such as Lagrange 

multipliers or penalty methods can be employed to handle the constraints while optimizing the 

objective function [46]. 

 
(a) FOPD-1 based ANFIS ((FO(ANFIS)PD-I)) Model on MATLAB 

 
(b) ANFIS based 20 input MFs 

 
(c) ANFIS based 20 output MFs 
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(d) FO(ANFIS)PD-I model based NARMA(L2) controller on MATLAB 

 
(e) NARMA(L2) controller associated with RACB model on MATLAB 

Fig. 12. Overall, NARMA(L2)-FO(ANFIS)PD-I model design on MATLAB 

3.3.2. Jaya Optimization Algorithm 

The Jaya optimization algorithm is a population-based metaheuristic approach inspired by the 

social behavior of individuals in a society. Introduced by R. V. Rao in 2016, it serves as an 

alternative to traditional optimization algorithms such as genetic algorithms and particle swarm 

optimization. The term “Jaya” represents the idea of joy or happiness, reflecting the algorithm's 

focus on exploration and exploitation in the search space. In the evaluation of RACB motion, the 

application of meta-heuristics, such as Jaya optimization, plays a pivotal role. These optimization 

techniques offer a systematic approach to fine-tuning the control parameters of RACBs, including 

those associated with Fractional Order Proportional Integral Derivative (FOPID) controllers. By 

harnessing the power of meta-heuristics, engineers and researchers can efficiently navigate the 

complex parameter space of RACB systems. Jaya optimization, in particular, focuses on exploiting 

the advantages of the best solutions while simultaneously improving upon the weaker ones. This 

approach enhances the overall adaptability and robustness of RACBs in dynamic environments. 

Meta-heuristics serve as valuable tools for achieving optimal performance, responsiveness to 

changing conditions, and the continuous improvement of RACB operations [47]. 

The Jaya algorithm follows a straightforward process: it maintains a population of potential 

solutions and iteratively updates them based on their performance. By doing so, it seeks to optimize 

a given objective function. Let's break down the key steps of the algorithm [48]. 

• Initialization: Determine the population size (N) and maximum number of iterations 

(MaxIter). Start with a population of N random solutions within the search space. Evaluate the 

objective function for each solution. 

• Update the population: For each iteration (t =  1 to MaxIter): Identify the best and worst 

solutions in the population based on their objective function values. Update each solution in 

the population using equation (27): 

 Xi =  Xi +  rand(value) ∗  (Xbest(t) −  abs(Xi)) −  rand(value)

∗  (Xworst(t) −  abs(Xi)) 
(27) 

Where: Xi represents the i − th solution in the population at iteration t, Xbest(t) refers to the 

best solution in the population at iteration t, Xworst(t) indicates the worst solution in the 

population at iteration t, rand(value) generates a random number between 0 and 1. 

• Handle constraints: If any solution violates problem constraints, adjust or modify it to ensure 

compliance. 
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• Evaluate the objective function: Calculate the objective function value for each updated 

solution. 

• Update the best solution: Determine the best new solution in the updated population. 

• Termination condition: If the maximum number of iterations is reached or a termination 

criterion is met, stop the algorithm. Otherwise, proceed to step 2. The Jaya algorithm 

emphasizes both exploration and exploitation. Exploration is achieved through the random 

term, which introduces diversity and enables the algorithm to explore new regions of the 

search space. Exploitation is facilitated by the best and worst solutions, which guide the 

population towards promising areas of the search space [49]. The Jaya algorithm does not 

require specific parameter tuning, making its implementation relatively straightforward. 

However, it may be necessary to handle constraints or make additional adjustments to adapt it 

to specific problem domains. The Jaya optimization algorithm offers a simple yet effective 

approach to optimization problems. By striking a balance between exploration and 

exploitation, it efficiently searches for optimal solutions within the search space [50]. 

4. Results and Discussion 

This section depicts and explains the methodology phases results, including: the NARMA-L2 

controller, ANFIS, and FOPID results based JOA. 

4.1. NARMA(L2)-FO(ANFIS)PD-I based Jaya Optimization Algorithm 

This section discusses the NARMA-L2-based plant identification after importing MATLAB 

output data MAT. Variables depends on training, validation, and testing were experimented on 

performance, training state, regression and X(2Y) graph as depicts in Fig. 13. part (a).  

NARMA-L2 based variables configuration, The NARMA-L2 controller is established by 

configuring the hidden layer to comprise nine neurons, with each neuron corresponding to a 

sampling period of approximately 0.1 seconds for every three input values. Two output plants were 

subsequently subjected to training, and their behavior was estimated within the RACB Simulink 

file. This configuration relied on four crucial elements: a maximum input constraint of four units 

and a minimum constraint of 4-1 during the 1000 training epochs. These constraints were expressed 

as part of the trainim membership function, which considered weights derived from validation and 

testing data, both of which were stored in a .MAT file with dimensions of N*1 for reference as in 

Fig. 13. part (b) Training data-based NARMA-L2, Fig. 13. part (c) Validation data-based 

NARMA-L2, and Fig. 13. part (d) Testing data-based NARMA-L2. 

  
(a) NARMA-L2 based variables configuration (b) Training data-based NARMA-L2 
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(c) Validation data-based NARMA-L2 (d) Testing data-based NARMA-L2 

  
(e) Training performance-based NARMA-L2 (f) Training state-based NARMA-L2 

  
(g) Training regression-based NARMA-L2 (h) 𝑋(2𝑌) graph-based NARMA-L2 

Fig. 13. NARMA-L2 model design configuration on MATLAB 

In the performance evaluation, the mean square error (MSE) was initially trained, achieving its 

best validation result during epoch 0, with an MSE value of 0.00031899. As the training stage 

commenced, the primary objective was to minimize error generation to its lowest possible level. 

However, during the subsequent testing stage, it became evident that the error was comparatively 

higher, with a magnitude of 10-1, in contrast to the 10-3.5 observed during the critical validation 

stage. This discrepancy highlights the importance of addressing and mitigating the error during the 

testing phase to enhance overall system performance as in Fig. 13. part (e) Training performance-
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based NARMA-L2, Fig. 13. part (f) Training state-based NARMA-L2, Fig. 13. part (g) Training 

regression-based NARMA-L2, and Fig. 13. part (h) X(2Y) graph-based NARMA-L2. 

Table 3 presents the training progress for NARMA-L2 controller, the initial value at 0 based 

on epoch unit while stopped value at 6, and the target value is 1000 repeated in epoch, 5 sec were 

applied for elapsed time based on 1.82e-05 to performance as initialization, 7.63e-06 considered as 

stopped value, 0.0186 for gradient as initializing, 0.000993 illustrated for stopped value, while the 

outcome of Mu, 0.001 as initial, 0.0001 for stopped value, and target based on both, 1e-10, 1e+10, 

in gradient, and Mu, respectively. the initialization, stopped, and target values were applied for 0, 6, 

and 6 based NARMA-L2 controllers. 

Fig. 14. discusses the RACBs mechanics motions based JOA parameters, five elements were 

applied for variables based on NARMA(L2)-FO(ANFIS)PD-I, lower and upper boundaries were 

experimented in 0 to 0.5 ranges, 1000 is considered as the size of population, while the maximum 

number of iterations were supposed as 3000. The NARMA-L2 controller plays a pivotal role in 

harnessing the power of neural networks to significantly reduce the probability of errors occurring 

during RACB motions at the end-effector. It is particularly crucial to ensure robust timing, which is 

of utmost significance in verifying the execution of tasks within the initial 20 seconds of handling a 

cube. Additionally, the utilization of FOPID based ANFIS has proven to be highly effective. This 

approach not only enhances the speed of arm motion but also demonstrates remarkable 

improvements in both pivot and wrist equipment operations. Furthermore, it contributes to the 

refinement of conveyor belt functionality, rectifying issues related to directivity and precision in 

handling tasks, thus optimizing the overall performance of the system. 

Table 3.  Training progress based NARMA-L2 controller 

Unit Initial Value Stopped Value Target Value 
Epoch 0 6 1000 

Elapsed Time - 00:00:05 - 

Performance 1.82e-05 7.63e-06 0 

Gradient 0.0186 0.000993 1e-10 

Mu 0.001 0.0001 1e+10 

Validation Checks 0 6 6 

 

As shown in Table 4, the values had a significant impact on evaluating the selection of the best 

gains and the criteria based on the optimized JOA. Various values were tested to achieve the 

optimal solution considering both the trade-off and critical value. These values were determined 

based on the NARMA(L2)-FO(ANFIS)PD-I criteria obtained from the introduced algorithm. The 

selection, formulation, and evaluation of these considerations are illustrated in Fig. 15. 

The proposed algorithm (JOA) operates by leveraging the probability of reconstruction to 

anticipate the optimal values for addressing a specific calculation problem in the NARMA(L2)-

FO(ANFIS)PD-I controller gains. The algorithm relies on a probability distribution, with 60% 

allocated to upper bounds, which correspond to the gains employed when the RACBs motion 

follows a positive cosine wave pattern (used for manipulating the cube on the right). 

The remaining 30% is dedicated to lower gains, which correspond to the RACBs behavior 

during a negative sine wave pattern (employed for handling the cube on the left). Table 4 presents 

the NARMA(L2)-FO(ANFIS)PD-I criteria, which are dependent on JOA. The table showcases a 

set of criteria, including Kp_joint,  Ki_motor, Kd_sensor, λ_gear, and µ_N which are specifically 

related to the motions of RACBs. 

Table 4.  The selection and evaluation of NARMA(L2)-FO(ANFIS)PD-I criteria based JOA 

NARMA(L2)-FO(ANFIS)PD-I Criteria 
𝐊𝐩_joint 𝐊𝐢_motor 𝐊𝐝_sensor 𝛌_gear µ_N 

0.4074 0.3156 0.3724 0.1898 0.2135 
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(a) at time 0 (sec) (b) at time 2 (sec) 

  
(c) at time 4.9 (sec) (d) at time 7.54 (sec) 

  
(e) at time 8.7752 (sec) (f) at time 13.16 (sec) 

Fig. 14. RACB mechanics explorer demo based arm motions on MATLAB 

5. Study Implications 

The study's implications can be synthesized into the following key points: 

• Enhancing RACB manufacturing outcomes: By implementing a robust integrated evaluation 

and selection approach for the Jaya optimization algorithm in the global RACB market, this 

study offers a promising avenue for improving RACB development. The results demonstrate 

the superior performance of the proposed JOA integrated approach, surpassing traditional 

RACB motions through the gains selection process. 

• Overcoming challenges in RACB optimization: The NARMA(L2)-FO(ANFIS)PD-I controller 

was subjected to comprehensive testing across the four main RACB motions and various 

angles. The findings revealed the inherent complexities in selecting the most effective method 

due to the diverse parameter influences (as shown in Table 4). Consequently, caution is 

advised against advocating for specific optimization algorithms. To address this challenge, the 

study presents a novel evaluation and selection framework through JOA integration. 

• Accounting for complex interactions and nonlinear effects: RACBs encounter a multitude of 

interactions with components such as joints, motors, gears, and sensors during real-world 

missions. These interactions often involve unknown factors with nonlinear effects that cannot 



284 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 4, No. 1, 2024, pp. 262-290 

 

Abdullah Fadhil Mohammed (Selection and Evaluation of Robotic Arm-based Conveyor Belts (RACBs) Motions: 

NARMA(L2)-FO(ANFIS)PD-I based Jaya Optimization Algorithm) 

 

be captured by conventional motion equations. Hence, it is crucial for researchers to 

acknowledge the significance of these factors. The study highlights this importance through 

the diverse outcomes observed in joints, motors, gears, and sensors. Notably, the study 

pioneers the development of weighted criteria for the five FOPID controller gains, tailored 

specifically to the four RACB motions (refer to Table 4). 

• Recommendation for future advancements: Building upon the selection outcomes, this study 

suggests leveraging adaptive neuro-fuzzy controllers within the developed JOA evaluation and 

selection algorithm to address the challenges. By incorporating the NARMA-L2, ANFIS, and 

FOPID-based JOA, this approach enables the selection of optimized values for all RACB 

motions, leading to enhanced RACB performance and improved end-effector capabilities. 

The study exhibits a range of both advantages and limitations: 

Advantages: 

• Comprehensive Methodology: The study employs a comprehensive methodology that 

integrates multiple control techniques, including NARMA-L2, ANFIS, and FOPID. This 

inclusive approach allows for a nuanced optimization process. 

• Adaptability Emphasized: By incorporating adaptive control techniques like ANFIS, the study 

endows the RACB system with the ability to respond to dynamic conditions and uncertainties, 

making it well-suited for volatile industrial environments. 

• Enhanced Performance Focus: The study aims to augment the overall performance of RACB 

systems by addressing critical issues such as non-linearity, energy efficiency, and safety. The 

expected outcome is heightened operational efficiency and diminished costs. 

• Safety Priority: The study underscores the importance of safety in RACB operations, 

particularly in industrial scenarios. This emphasis on safety measures is essential to prevent 

accidents and ensure the well-being of workers. 

• Applicability in Real-world Scenarios: The study's application in MATLAB Simulink 

enhances its relevance to actual RACB systems, making it potentially implementable in 

practical industrial environments. 

Limitations: 

• Complexity Challenge: The integrated approach, involving a combination of various control 

techniques and optimization methods, can be intricate to execute and fine-tune. It may 

necessitate substantial expertise and computational resources. 

• Resource Demands: The utilization of machine learning techniques such as ANFIS can 

consume significant computational resources, rendering it unsuitable for systems with limited 

computing capabilities. 

• Data Prerequisites: The efficacy of machine learning-based methods, notably ANFIS, is 

contingent upon the availability of high-quality data. Collecting and processing such data can 

be daunting in industrial settings. 

• Generalizability Constraints: The findings of the study may be specific to the studied RACB 

system and the industrial context, constraining their applicability to other systems or 

industries. 

• Overfitting Concerns: The study should address the issue of overfitting in machine learning 

models to ensure that the proposed control strategies possess robust applicability to diverse 

situations. 

• Practical Implementation Complexity: While the study offers theoretical and simulation-based 

outcomes, the practical implementation of the proposed control strategies in actual industrial 



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

285 
Vol. 4, No. 1, 2024, pp. 262-290 

  

 

Abdullah Fadhil Mohammed (Selection and Evaluation of Robotic Arm-based Conveyor Belts (RACBs) Motions: 

NARMA(L2)-FO(ANFIS)PD-I based Jaya Optimization Algorithm) 

 

RACB systems may encounter additional complexities and necessitate validation in real-world 

settings. 

• Cost Evaluation: The incorporation of advanced control methods and optimization techniques 

may entail supplementary costs, necessitating a thorough assessment of anticipated benefits. 

• The study presents a promising avenue for optimizing RACB motions in industrial settings. 

Nevertheless, it encounters challenges related to intricacy, resource demands, and the 

requirement for practical validation. Addressing these limitations and thoughtfully considering 

the advantages will guide future research endeavors and potential industrial applications 

stemming from the study's findings. 

 

Fig. 15. Statistical assessment of the JOA algorithm utilizing the NARMA(L2)-FO(ANFIS)PD-I criteria 

6. Conclusion   

The literature has extensively documented the significance of RACBs in industrial operations. 

Previous studies have emphasized the importance of RACBs, prompting numerous researchers to 

develop techniques and models related to RACB movements. However, when it comes to RACB 

motions, various challenges have emerged, including the availability of multiple evaluation criteria, 

the existence of trade-offs, variations in critical values, and the relative importance of each 

NARMA(L2)-FO(ANFIS)PD-I criterion for each RACB motion. This research aims to tackle these 

challenges by evaluating and selecting the Jaya optimization algorithm for four specific RACB 

motions: joints, motors, gears, and sensors. Importance criteria weights for each motion are 

determined using the former, while the latter employs these weights in the Jaya optimization 

algorithm selection process. Both methods hold significance, as they contribute to identifying the 

most optimized values for each RACB motion. This contribution is particularly valuable for the 

implementation of reliable RACB industrial explorations. The robustness of this approach is 

demonstrated through two evaluation approaches: the NARMA-L2 controller and ANFIS. 

However, this work has certain limitations. Firstly, the selection procedure for the Jaya 

optimization algorithm during RACB motions is performed statically, without considering the 

dynamic nature of simultaneous motion execution. Future research should address this issue by 

incorporating the dynamically changing environment and the need for continuous synchronization 

between different motions. Additional limitations to be addressed include the use of a uniform 

evaluation approach across all motions, without considering interrelationships between them or 
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across motions. Future research can investigate the impact of each criterion on others using a 

double-input-double-output-ANFIS and develop evaluation laboratory modeling to measure the 

influence of criteria on weighting values. Furthermore, the evaluation and selection process lack a 

precise measurement of conflicts or trade-offs among criteria for each motion. In addition, the PC 

speed parameters were simulated and done in MSI Crosshair Core i7-11750H with Nvidia GeForce 

RTX 3050 Ti Laptop GPU 16GB dedicated RAM with percentage usage of 3% CPU, 33% GPU, 

72% Memory, 3% Disk, 3018 RPM Fan 1, 2666 RPM Fan 2, 31% SSD, 71°C CPU Temperature, 

562 MHz GPU Clock, 810 MHz VRAM Clock, and 46°C GPU Temperature with MATLAB 

R2022a. The implications of this study for enhancing the manufacturing outcomes of RACBs 

within the global industrial market are significant and hold great potential for future research. The 

following are specific implications: 

a) Gaining a Competitive Edge: The findings of this study can offer RACB manufacturers a 

competitive advantage. By optimizing RACB motions to strike a balance between conflicting 

factors like energy efficiency, precision, and throughput, manufacturers can present systems 

that surpass competitors in terms of versatility and efficiency. 

b) Adaptability to Market Dynamics: RACB systems, designed with a profound understanding of 

trade-offs and conflicts among criteria, can be more adaptable to the dynamic needs of the 

industrial market. Manufacturers can customize their offerings to meet precise customer 

requirements and swiftly adapt to shifting market demands. 

c) Enhanced Energy Efficiency: As global concerns regarding energy efficiency persist, the 

insights from this study can aid manufacturers in developing RACBs that not only conserve 

energy but also maintain high levels of performance. This is especially critical as sustainability 

becomes a central consideration in industrial operations. 

d) Prioritizing Safety and Compliance: The study's emphasis on safety considerations can lead to 

RACB designs that prioritize worker safety and align with industry regulations. This approach 

can reduce accidents, minimize downtime, and mitigate potential legal issues, ultimately 

enhancing the overall dependability of RACBs in manufacturing environments. 

e) Informed Resource Allocation: Manufacturers can make well-informed decisions regarding 

the allocation of resources. For example, if safety and precision are of paramount importance, 

investments can be directed towards advanced sensors and control systems, ensuring that 

resources are optimally utilized to achieve specific objectives. 

f) Exploring New Markets: With RACBs capable of accommodating user preferences and 

diverse market requirements, manufacturers can venture into new markets and industries. The 

ability to offer versatile and adaptable RACB solutions can open doors to previously 

unexplored sectors. 

g) Proactive Risk Management: Understanding the trade-offs among criteria empowers 

manufacturers to proactively identify and mitigate risks associated with RACB operations. 

This proactive approach can prevent costly incidents and minimize downtime. 

h) Continuous Enhancement: Manufacturers can implement continuous improvement processes 

guided by the insights from this study. By regularly reviewing and optimizing RACB designs 

and control strategies, they can maintain a competitive edge and remain at the forefront of 

technological advancements. 

i) Global Adoption: The study's findings can stimulate the global adoption of RACBs across 

various industries. When RACBs offer enhanced performance, efficiency, and safety, they 

become appealing solutions for manufacturers worldwide.  

In future research, scholars can delve further into the practical implementation of the study's 

insights, developing real-world applications and case studies to demonstrate the tangible benefits of 

optimizing RACB motions. Furthermore, exploring the economic and environmental impacts of 

these optimizations can further validate the advantages of the proposed approach. By considering 
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these implications and integrating them into future research and development endeavors, 

manufacturers can position themselves as leaders in the RACB market, delivering solutions that 

align with the evolving requirements of the global industrial sector. 
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