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1. Introduction 

Predicting energy usage in the steel manufacturing industry is essential for improving energy 

efficiency, reducing costs, meeting environmental regulations, and promoting sustainability. Energy 

consumption in the steel industry refers to the amount of electricity used by steel plants and facilities 

to produce steel products. This energy is consumed in various forms, including electricity, fuel, and 

heat [1]. Predicting energy usage in the steel manufacturing industry is important for several reasons. 

Firstly, it can help steel companies to manage their energy use and reduce costs. By accurately 

predicting energy consumption, steel plants can optimize their production processes and reduce energy 

waste, which can result in significant cost savings [2]. Secondly, predicting energy consumption can 

ARTICLE INFO  ABSTRACT 

 

Article history 

Received October 11, 2023 

Revised November 24, 2023 

Accepted January 03, 2024 

 This article presents a machine learning model for predicting energy 

consumption in the steel industry, which aids in energy management, cost 

reduction, environmental regulation compliance, informed decision-

making for future energy investments, and contributes to sustainability. 

The dataset used for the prediction model comprises 11 attributes and 

35,040 instances. The CatBoost prediction algorithm was employed for 

energy consumption prediction, and hyperparameter optimization was 

performed using GridSearchCV with 5-fold cross-validation. The 

developed model has undergone a comparative analysis based on both Root 

Mean Squared Error (RMSE) and Mean Absolute Percentage Error 

(MAPE) metrics, demonstrating its promise for accurate energy 

consumption prediction on both the training and test sets. The proposed 

model accurately predicts energy consumption for different load types, 

achieving impressive results on both the training set (RMSE=0.382, 

R2=0.999, MAPE=1.139) and the test set (RMSE=1.073, R2=0.998, 

MAPE=1.142). These findings highlight the potential of CatBoost as a 

valuable tool for energy management and conservation, enabling 

organizations to make informed decisions, optimize resource allocation, 

and promote sustainability. 

 

Keywords 

Energy Consumption;  

Data Analysis;  

Predictive Modeling;  

Machine Learning in Steel 

Industry;  

Energy Optimization 
 

This is an open-access article under the CC–BY-SA license. 

 

http://pubs2.ascee.org/index.php/ijrcs
https://doi.org/10.31763/ijrcs.v4i1.1234
mailto:ijrcs@ascee.org
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


34 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 4, No. 1, 2024, pp. 33-49 

 

 

K. Karthick (Predictive Modeling of Energy Consumption in the Steel Industry Using CatBoost Regression: A Data-

Driven Approach for Sustainable Energy Management) 

 

help steel companies to meet environmental regulations and minimize their environmental impact by 

lowering carbon emissions. The steel industry is a significant source of global warming gas emissions, 

and minimizing energy consumption is a key part of efforts to mitigate climate change [3]. Thirdly, 

predicting energy consumption can help steel companies to make informed decisions about future 

energy investments. By understanding their energy consumption patterns and requirements, steel 

companies can identify opportunities to invest in renewable energy sources or energy-efficient 

technologies, which can further reduce costs and improve their environmental impact [4]. Machine 

learning falls under the umbrella of artificial intelligence, which empowers computers to learn and 

enhance through experience, without requiring explicit programming [5]. In the context of predicting 

energy usage in the steel manufacturing industry, machine learning algorithms can analyze historical 

data on energy usage patterns and identify complex relationships between variables that may not be 

obvious to humans [6]. This can help to develop accurate predictive models suitable for predicting 

future energy consumption and optimize energy usage in real-time. By using machine learning, it is 

possible to identify opportunities for energy savings, reduce energy waste, and ultimately decrease 

energy costs, while at the same time contributing to a more sustainable future. 

Compared to conventional methods, machine learning excels in predicting energy consumption 

due to its ability to handle complex and nonlinear relationships between variables, and its adaptability 

to changing conditions and data patterns. 

Conventional methods for predicting energy consumption are Regression analysis, Time-series 

analysis and Expert systems. Statistical techniques are employed in regression analysis [7] to model 

the correlation between independent and dependent variables. However, it assumes a linear 

relationship between variables and may not capture complex patterns. 

Utilizing time-series analysis [8], this method relies on historical data to predict future energy 

consumption. Nevertheless, its effectiveness may be limited in adapting to changing conditions and 

capturing nonlinear relationships. Expert systems method relies on expert knowledge and rules to 

predict energy consumption. However, it may be limited by the availability of expert knowledge and 

may not capture all relevant variables [9]. Machine learning can automatically learn from data and 

adapt to changing conditions. It can handle complex and nonlinear relationships between variables, 

and can use multiple sources of data to make accurate predictions [10].  

The proposed energy consumption prediction model for predicting the energy consumption in 

the steel industry can have several benefits. First, it can help the company better manage its energy 

use and reduce costs by identifying areas where energy efficiency can be improved. Second, it can 

help the company meet environmental regulations and reduce its carbon footprint by identifying areas 

where energy use can be reduced. Third, it can help the company make more informed decisions about 

future energy investments by providing a clearer picture of its current energy use and future needs. 

Finally, by reducing energy consumption, the company can also contribute to a more sustainable 

future and help address the global challenge of climate change. 

The major contributions of this research are as follows: 

• The research presents results that demonstrate accurate energy consumption prediction using 

the CatBoost regression algorithm.  

• This accurate prediction of energy consumption leads to environmental benefits by reducing 

carbon emissions and promoting sustainable practices in the steel industry.  

• The article provides valuable insights of the data that leads to significant cost savings and 

improved energy efficiency, aligning with the financial and environmental goals of the company. 

• The use of CatBoost as the regression algorithm is a notable contribution. CatBoost efficiently 

handles both numerical and categorical features, making it well-suited for the energy 

consumption prediction task, where diverse types of data need to be analyzed for accurate 

predictions.  
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• The research applies GridSearchCV with 5-fold cross-validation for hyperparameter 

optimization to the CatBoost model. This optimization process fine-tunes crucial 

hyperparameters, such as the number of trees (iterations), tree depth, and learning rate, to 

achieve the best model performance. By tuning these hyperparameters, the model's predictive 

capabilities are improved, leading to better energy consumption predictions and overall model 

effectiveness. 

• The proposed CatBoost approach is compared with existing methods and the results demonstrate 

that CatBoost outperforms these traditional algorithms in terms of various evaluation metrics. 

The feature importance plot has been provided to indicate the contribution of each feature to the 

model's prediction performance. 

2. Related Works 

In the realm of energy consumption prediction, a range of innovative methodologies have been 

explored. The works explored encompass hybrid models, advanced deep learning architectures, and 

ensemble techniques, each contributing novel approaches to accurate load forecasting. With 

applications ranging from residential to industrial sectors, these studies collectively offer insights into 

enhancing energy efficiency and management through innovative predictive tools. Kao et al. [11] 

developed a hybrid forecasting model to overcome the challenge of accurately predicting energy 

consumption, which is attributed to the non-linear nature of electricity consumption time series. The 

framework combines individual forecasting models such as ARIMA- genetic algorithm- support 

vector regression using the ensemble approach. The viability of the proposed framework was validated 

through a study using Taiwanese energy consumption data. Moreover, the framework outperformed 

other forecasting methods in terms of accuracy. 

In their study, Ridwana et al. [12] highlight the need for energy-efficient building systems to 

address the significant energy usage in the expanding building sector. The ANN based model that 

incorporates data classification to enhance the precision of forecasting energy consumption on an 

hourly or sub-hourly basis for four buildings. The proposed models exhibit improved performance in 

assessing electricity demand compared to traditional regression models. This approach holds potential 

for applications in building energy conservation. 

Abdullatif Baba [13] examines the performance of three methods for forecasting daily power 

usage in an industrial area. The methods tested are a probabilistic approach based on Multiple Model 

Particle Filter, two ANNs with different numbers of hidden layers, and an adaptive ANN that adjusts 

its structure based on historical data. The study emphasizes the capabilities of artificial intelligence 

(AI) techniques, as demonstrated by a supplementary analysis that utilizes a genetic algorithm to 

propose an optimal generator outage schedule. 

Ngoc-Son Truong and colleagues [14] proposed utilizing additive ANNs (AANNs) to estimate 

the energy usage in residential buildings using a dataset obtained from a building that had a solar PV 

system. Their AANNs model displayed better accuracy, with MAPE of 14.04% and a MAE of 111.98 

Watt-hour. The AANNs model outperformed support vector regression (SVR) by 103.75% in MAPE 

and traditional ANNs by 4.6% in MAPE. The researchers concluded that among the tested models, 

the AANNs model demonstrated superior effectiveness in predicting energy consumption. They also 

noted that this model could serve as a valuable tool for building managers aiming to enhance energy 

efficiency. 

The authors, Jui-Sheng Chou and Duc-Son Tran [15], conducted a review of machine learning 

methods that utilize real-time data to forecast energy usage in buildings. They assessed the 

performance of single, ensemble, and hybrid models and concluded that the hybrid model, which 

utilizes both forecasting and optimization techniques, displayed the highest accuracy. Their primary 

goal was to provide a comprehensive overview of short-term load forecasting techniques and support 

users in energy management planning. 
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Dorado Rueda et al. [16] suggests a deep learning architecture based on WaveNet to forecast load 

demand in France 24 hours ahead. It shows superior performance compared to traditional statistical 

approaches such as ARIMA and other deep learning models. The study concludes that the proposed 

architecture can provide accurate and robust load demand forecasting in complex energy systems. 

Ramos and colleagues [17] proposed a new methodology for energy consumption forecasting 

that utilizes an ANN and utilizing progressive learning techniques. The ANN undergoes daily training 

to ensure the forecasting model remains up-to-date. The study utilized a dataset covering a period of 

16 months, with data collected at 5-minute intervals from an actual industrial facility. The research 

indicated that WAPE (Weighted Absolute Percentage Error) was a more dependable measure for 

forecast performance, and the proposed method maintained low forecast errors ranging from 8.5% to 

13.5%. The ANN model with 128 neurons in the intermediate layers and a learning rate of 0.005 

exhibited the highest precision. The outcomes indicate the advantages of the suggested method, 

including reduced energy consumption and optimized energy management, resulting in decreased 

energy costs. 

Taheri, S et al. [18] suggests a hybrid prediction model for load forecasting in modern energy 

systems, where the uncertainty, non-linearity, and non-stationarity of signals pose a challenge. The 

proposed model integrates long short-term memory (LSTM) with empirical mode decomposition for 

California ISO dataset, resulting in improved accuracy in demand forecasting. The performance was 

compared to that of single LSTM, XGBoost, and logistic regression models. They demonstrated a 

significant improvement in MAPE for both short- and long-term prediction compared to the other 

models. Deep learning models may be preferred for more complex problems with large datasets and 

when the data exhibits spatial or temporal dependencies [19].  

In our proposed work, we utilize the CatBoost algorithm, which is a fast prediction algorithm 

with a symmetric tree structure, for building the regression model. Additionally, we perform feature 

selection to remove irrelevant features and use GridSearchCV with 5-fold cross-validation to optimize 

hyperparameters. 

3. Material and Methods 

3.1. Data 

The UCI steel industry energy consumption dataset [20] consists of various parameters related to 

energy consumption, which are listed in Table 1. This dataset is available in the publicly available 

database [20]. The dataset has 11 attributes and 35040 instances. The column 'date' is of type object, 

and the other columns are of either float64, int64, or object type. The dataset is complete, and there 

are no null or missing values present. The ‘Usage_kWh’ is the target variable. The dataset contains 

electricity consumption data for every 15 minutes in a year-long period. 

Table 1.  Attributes description 

Attribute Description 
Usage_kWh The continuous energy consumption in kilowatt-hour (kWh) 

Lagging_Current_Reactive.Power_kVarh Continuous kVarh for lagging current reactive power. 

Leading_Current_Reactive_Power_kVarh 
The continuous measurement of the leading current reactive power in 

kVarh. 

CO2(tCO2) Continuous ppm 

Lagging_Current_Power_Factor Power factor in % 

Leading_Current_Power_Factor Power factor in % 

NSM Continuous variable indicating the seconds elapsed since midnight 

Week status Categorical (Weekend (0) or a Weekday(1)) 

Day of week Week days 

Load Type 
The load is categorized into three categories: light, medium, and 

maximum load 
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Fig. 1 shows the proposed energy consumption prediction model. The objective of this regression 

model is to predict the energy consumption ('Usage_kWh') based on the features listed in Table 1, 

excluding the 'NSM', 'WeekStatus', and 'Day_of_week' features. Table 2 provides the various statistics 

and characteristics for different features of the dataset. The mean is the average value of the attribute 

across all instances. For example, the mean energy consumption (Usage_kWh) across all instances is 

approximately 27.387 kilowatt-hours. Standard deviation measures the dispersion or spread of values 

around the mean. It gives you an idea of how much the values vary from the mean. A higher standard 

deviation indicates more variability. The minimum value observed for the attribute. For instance, the 

minimum energy consumption (Usage_kWh) recorded in the dataset is 0 kWh. The % indicates the 

first, second and third quartile. The maximum value observed for the attribute. For example, the 

maximum energy consumption (Usage_kWh) recorded in the dataset is 157.18 kWh. The dataset has 

the values every 15 minutes. This detailed temporal resolution challenges in handling and processing, 

requiring careful consideration during analysis. The inclusion of categorical variables such as 'Week 

Status' and 'Day of Week' introduces a need for appropriate encoding or handling during modeling, 

ensuring their meaningful incorporation into the predictive model. 

 

Fig. 1. Proposed energy consumption prediction model 

Table 2.  Dataset characteristics 

Feature Count Mean Std Min 25% 50% 75% Max 
Usage_kWh 35040 27.387 33.444 0 3.2 4.57 51.2375 157.18 

Lagging_Current_Reactive.Power_kVarh 35040 13.035 16.306 0 2.3 5 22.64 96.91 
Leading_Current_Reactive_Power_kVarh 35040 3.871 7.424 0 0 0 2.09 27.76 

CO2(tCO2) 35040 0.012 0.016 0 0 0 0.02 0.07 

Lagging_Current_Power_Factor 35040 80.578 18.921 0 63.32 87.96 99.0225 100 
Leading_Current_Power_Factor 35040 84.368 30.457 0 99.7 100 100 100 

NSM 35040 42750 24940.53 0 21375 42750 64125 85500 



38 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 4, No. 1, 2024, pp. 33-49 

 

 

K. Karthick (Predictive Modeling of Energy Consumption in the Steel Industry Using CatBoost Regression: A Data-

Driven Approach for Sustainable Energy Management) 

 

3.2. Exploratory Data Analysis 

Exploratory data analysis (EDA) is to bring the most essential features of the data into focus for 

further analysis [21]. Fig. 2 displays the CO2 Emission by weekday for different load types. The data 

suggests that CO2 emissions are consistently low for the light load category (0.00 ppm), indicating 

minimal contribution to emissions. Conversely, the maximum load category consistently exhibits the 

highest emissions (0.03 ppm) on various weekdays. The medium load category falls in between, with 

emissions usually at 0.02 ppm, occasionally dropping to 0.01 ppm on certain days. The industry can 

focus on implementing load management strategies to reduce the reliance on maximum load 

operations, optimizing energy consumption, and distributing the load more efficiently to minimize 

CO2 emissions associated with high load demands. Regardless of the load type, the industry can 

further reduce overall CO2 emissions by implementing energy efficiency measures, including 

upgrading to energy-efficient technologies, optimizing processes, and conducting regular energy 

audits. In pursuit of further emission reduction, the industry can explore integrating renewable energy 

sources into its operations. By investing in solar, wind, or other clean energy solutions, the industry 

can supplement traditional energy sources, leading to reduced emissions and a more sustainable 

energy mix. 

 

Fig. 2. CO2 Emission by weekday for different load types 

Fig. 3 demonstrates comparable effects, where it displays the lagging current reactive power for 

various load types categorized by weekday. Similarly, Fig. 4 illustrates the leading current reactive 

power by weekday for different load types. For medium loads, the leading current reactive power is 

maximum on Wednesday followed by Thursday. It is observed that the leading current reactive power 

is maximum for medium loads, while it is comparably low for maximum and light loads. On the other 

hand, lagging current reactive power is maximum for maximum loads, while it is low for light and 

medium loads. Lagging current reactive power continuous in kVARh is a measure of the total reactive 

power consumed by a load that has a lagging power factor over a given time period. 

 

Fig. 3. Lagging current reactive power by weekday for different load types 
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Fig. 4. Leading current reactive power by weekday for different load types 

Reactive power is the power consumed by electrical devices to generate magnetic fields, which 

are required for the operation of devices like motors and transformers [22]. A lagging power factor 

occurs when the load consumes more reactive power than what is needed to meet its requirement of 

active power, causing the voltage and current to be out of phase. Continuous kVARh is a measure of 

the total reactive energy consumed by the load over time, and it is used to determine the compensation 

needed for reactive power to achieve the required power factor. Reactive power is the power in an AC 

circuit that does not contribute to the net power transferred to the load but instead alternately stores 

and returns energy to the source. It is measured in units of volt or kilovolt-amperes reactive (VAR or 

kVAR). The continuous kVarh is a unit of energy that indicates the accumulation of reactive power 

during a specific time frame and is widely utilized for measuring the overall reactive energy usage of 

a system or device. 

Fig. 5 and Fig. 6 display the leading and lagging current power factors, respectively, by weekday 

for different load types. For maximum load conditions, the leading power factor is maximum in 

percentage, while for light and medium loads, the lagging power factor is comparably low. The 

lagging current power factor and leading current power factor columns represent the ratio of real 

power (kW) to apparent power (kVA), which indicates how efficiently the electrical power is being 

used. A lagging current power factor indicates that the current is lagging behind the voltage in the 

system, which can lead to higher energy consumption and lower efficiency [23]. 

Fig. 7 illustrates the energy consumption patterns specifically on weekdays. The data reveals that 

energy consumption attributed to light loads is higher on Fridays, Saturdays, Sundays, and Mondays. 

Conversely, energy consumption associated with light loads is comparatively lower on Thursdays. 

We can observe the same impact on CO2 emission, and lagging current power factor. Fig. 8 displays 

the energy consumption by day in the Steel Industry. It reveals that energy consumption is highest in 

February. 

 

Fig. 5. Leading current power factor by weekday for different load types 
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Fig. 6. Lagging current power factor by weekday for different load types 

 

Fig. 7. Energy consumption by weekday for different load types 

 

Fig. 8. Energy consumption by the day in steel industry 

In Fig. 9, we see a heatmap of the dataset. Heatmaps provide a visualisation that is easy to 

comprehend by using different colours and sizes to represent data [24]. This heatmap displays the 

energy consumption in ‘Usage_kWh’ by ‘Load_Type’ and ‘Day_of_week’. The rows represent the 

days of the week, while the columns represent the load types. The values in the cells indicate the 

energy consumption in kWh for that specific day of the week and load type combination. The colour 

scale shows the energy consumption level, with cool colours representing lower values and warm 

colours representing higher values. The annotations on the heatmap indicate the actual values for each 

cell, rounded to two decimal places. From the heatmap, it is observed that energy consumption varies 
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based on the load type and the day of the week. Fridays and Thursdays tend to have the highest average 

energy consumption for both “Maximum Load” and “Medium Load,” while Sundays and Saturdays 

have the lowest consumption for these load types. Among the load types, “Maximum Load” generally 

exhibits the highest energy consumption, followed by “Medium Load” and then “Light Load.” 

 

Fig. 9. Heatmap of the dataset 

3.3. Data Pre-processing 

The missing and duplicate values of the dataset have been checked, and label encoding has been 

performed on the categorical variables 'WeekStatus', 'Day_of_week', and 'Load_Type', converting 

them into integer variables. Label encoding is essential for ML/DL model development as it allows 

the model to interpret the data to make predictions or identify patterns. By encoding categorical 

variables, we transform them into a format easily used by machine learning algorithms [25]. 

The WeekStatus feature had two categories: “Weekday” and “Weekend”, which were encoded 

as 0 and 1, respectively. The Day_of_week feature had seven categories representing the days of the 

week, encoded as integers from 0 to 6, with 0 representing Monday and 6 representing Sunday. The 

Load_Type feature had three categories: “Light_Load”, “Medium_Load”, and “Maximum_Load”, 

encoded as integers 0, 1, and 2, respectively. 

To characterize the presence of missing values, consider a matrix 𝑌 representing the complete 

dataset, which is divided into two components: 𝑌𝑜 representing the observed data, and 𝑌𝑚 representing 

the missing data [26]. Let 𝑅 represent a matrix of missing values, defined as in equation (1). 

 
𝑅: =  {

0 ; 𝑖𝑓 𝑌 𝑖𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
1 ; 𝑖𝑓 𝑌 𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔

} (1) 

3.4. Proposed CatBoost Machine Learning Algorithm 

CatBoost is a boosting algorithm that is known for its fast prediction time and symmetric tree 

structure. It is approximately 8 times faster than XGBoost when it comes to prediction [27]. The 

CatBoost learning method is capable of automatically adjusting models to their environments. It can 

build complex connections between the output data and various types of incoming data, all of which 

are subject to change at any given time. This makes it possible to accurately predict the cost of power 

consumption. 
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Unlike other algorithms, CatBoost does not require any additional information to function well, 

such as domain knowledge on the impact of numerous features on energy consumption. Provided that 

sufficient training data is available, the learning process will identify all the relationships between the 

parameters automatically. 

To implement CatBoost, various steps need to be taken, such as forming training and test 

subsamples for the algorithm, as well as a control subsample to evaluate the adequacy of the model. 

The control subsample ensures that the resulting model is satisfactory. Defining the input and output 

vectors is also crucial. The input vector for the model consists of the production system's input features 

that have an impact on energy consumption. The output vector, on the other hand, represents the 

predicted power consumption value for the given timeframe. Greedy Target-based Statistics [28] is 

defined as in equation (2). 

 ∑ [𝑋𝑗,𝑘 = 𝑋𝑖,𝑘]
𝑝
𝑗=1 𝑌𝑖

∑ [𝑋𝑗,𝑘 = 𝑋𝑖,𝑘]
𝑝
𝑗=1

 (2) 

Consider a provided dataset of observations 𝐷 = {𝑋𝑖, 𝑌𝑖} where 𝑖 = 1, 2, ..., n. If we have a 

permutation 𝜎 = (𝜎1, 𝜎2, 𝜎3 . . . , 𝜎𝑛), the value 𝑥𝜎𝑝,𝑘  is replaced with [28] and it is given in equation 

(3). 

 ∑ [𝑥𝜎𝑗,𝑘 = 𝑥𝜎𝑝,𝑘]𝑌𝑖
𝑝−1
𝑗=1 + 𝑎𝑃

∑ [𝑥𝜎𝑗,𝑘 = 𝑥𝜎𝑝,𝑘]𝑌𝑖
𝑝−1
𝑗=1 + 𝑎

 (3) 

4. Results and Discussions 

4.1. Dataset Split 

The dataset with 35,040 instances and 7 features has been considered for developing the energy 

consumption regression model. The dataset was segmented into training and testing sets using an 

80:20 ratio. This approach ensures that the model has sufficient data to learn from while also being 

able to evaluate its performance on unseen data. This technique also helps prevent the model from 

overfitting and memorizing the training data, allowing it to perform well on new data [29]. 

4.2. Features Selection 

The ‘date’, ‘NSM, ‘WeekStatus’ and 'Day_of_week' features has been discarded for developing 

the CatBoost regression model. 'date' is likely a unique identifier for each data point and does not 

provide any information that can improve the prediction accuracy [30]. 

The feature 'NSM' (Number of seconds from midnight) is considered redundant as other features 

such as 'Load_Type' already capture time-related information. Similarly, the feature 'WeekStatus' is a 

binary indicator for weekdays or weekends, which is not expected to greatly influence energy usage 

predictions. The categorical feature 'Day_of_week' indicating the specific day of the week is also not 

anticipated to have a substantial impact on energy consumption predictions. Therefore, these features 

are not relevant to the problem and have been discarded to simplify the model and improve its 

performance.  

The other features listed in Table 1 have been selected because they are believed to have a strong 

relationship with the target variable, which is Usage_kWh. Specifically, Lagging 

Current_Reactive.Power_kVarh and Leading_Current_Reactive_Power_kVarh are measures of 

reactive power, which is a significant factor in estimating the total power consumption. CO2 (tCO2) 

is a measure of carbon dioxide emissions, which is directly related to energy consumption. 

Lagging_Current_Power_Factor and Leading_Current_Power_Factor are measures of power factor, 

which is also an important factor in determining energy consumption. Finally, Load_Type is a 
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categorical variable that indicates the type of load, which could be useful in predicting energy 

consumption patterns for different types of loads. 

4.3. GridSearchCV Optimization 

The hyperparameter tuning using GridSearchCV with 5-fold cross validation has been 

performed. GridSearchCV is a technique in machine learning used for tuning hyperparameters. 

GridSearchCV is a technique that entails a comprehensive search across a predefined range of 

hyperparameters to find the best combination that maximizes the effectiveness of the CatBoost model 

[31]. 

In the context of the CatBoost regression model, GridSearchCV is employed to fine-tune crucial 

hyperparameters such as the number of trees (iterations), tree depth (depth), and learning rate 

(learning_rate) to optimize the model's performance. By tuning these hyperparameters, we can 

progress the model performance and achieve better results. Initially CatBoostRegressor model has the 

following hyperparameters: 

Iterations: The number of trees included in the gradient boosting model. Three values are 

provided: 500, 1000, and 1500. depth: The maximum depth of each tree. Three values are provided: 

4, 6, and 8. learning_rate: It defines the step size taken during each iteration of the training process. 

Three values are provided: 0.01, 0.1, and 0.5. 

During the training process, the CatBoost model will iteratively improve its predictions on the 

training data by adjusting its parameters. The objective is to reduce the RMSE. After completing the 

training process, the model becomes capable of making predictions on fresh data. 

The choice of k in k-fold cross-validation varies according to the size of the dataset and the 

computational resources available [32]-[36]. The value of k is set to 5 in this scenario, which results 

in the dataset being divided into 5 folds of the same size. The model undergoes training and testing 

five times, where each fold is utilized as the validation set once, while the remaining four folds are 

used for training purposes. This approach helps to assess the CatBoost model's effectiveness on 

various subsets of the data and reduces the likelihood of overfitting. The prediction error is estimated 

using cross-validation as follows: 

 𝐶𝑉(𝑓) =
1

𝑛
∑ 𝑇(𝑌𝑖, 𝑓−𝑘(𝑖)(𝑥𝑖))𝑛

𝑖=1   (4) 

Here, 𝑘 is the count of subsets, n represents the dataset's size, 𝑇 is the loss function, and 𝑓−𝑘(𝑖) stands 

for the fitted function. GridSearchCV defines the hyperparameters to optimize as the number of 

iterations, depth of the tree, and learning rate. It then fits the GridSearchCV on the training data using 

these hyperparameters and uses negative mean squared error as the scoring metric. 

After the hyperparameters have been identified, the code trains the CatBoost model with the best 

hyperparameters obtained from the GridSearchCV. It sets the number of iterations, depth, and learning 

rate of the model to the values identified by GridSearchCV, and then fits the model on the training 

data with verbose set to False. The hyperparameters that were obtained after performing 

GridSearchCV with 5-fold cross validation are: 'depth': 4, 'iterations': 1500, 'learning_rate': 0.5, Loss 

Function: RMSE and Random Seed: 42. 

4.4. Energy Consumption Prediction 

The residual plot of the CatBoost regression model is presented in Fig. 10, which is a useful tool 

for evaluating the effectiveness of the CatBoost regression model. The blue dots represent the model's 

predictive capability on the training set, while the red dots represent the performance on the test set. 

A desirable model should have residuals that are randomly distributed around the zero line, implying 

that the model is not systemically overestimating or underestimating the target variable. 
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Fig. 10. Residual plot 

4.5. Evaluation Matrices 

There are several measurements for the performance of regression model predictions, but here 

we are using dour measurements of a given dataset [37]–[39]. RMSE: It represents the standard 

deviation of the prediction errors as shown in equation (5). It provides insight into the concentration 

of the data around the line of best fit. Equation (6) represents the coefficient of determination or R2, 

while equation (7) represents the MAPE. 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − �̅�𝑖)2𝑛

𝑖=1

𝑛
 (5) 

 
𝑅2 = 1 −

∑ (𝑦𝑖 − �̅�𝑖)2𝑛
𝑖=1

∑ (𝑦𝑖 − µ)2𝑛
𝑖=1

 (6) 

 
𝑀𝐴𝑃𝐸 =

1

𝑛
× ∑

|𝐴𝑐𝑡𝑢𝑎 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|

𝐴𝑐𝑡𝑢𝑎𝑙
× 100

𝑛

1

 (7) 

where 𝑛 is the total number of observations. MAPE is useful for measuring the accuracy of a model 

when the scale of the target variable varies widely. 

RMSE is particularly relevant for energy consumption prediction models as it provides a 

comprehensive understanding of the prediction errors in the same unit as the target variable (e.g., 

kilowatt-hours). This makes it easy to interpret and directly assess the accuracy of the model's 

predictions. R2 is valuable for understanding the proportion of variability in energy consumption that 

the model explains. MAPE is suitable for energy consumption prediction models because it provides 

a percentage measure of the accuracy of predictions. This is particularly relevant in applications like 

energy forecasting, where stakeholders often need to understand the magnitude of errors relative to 

the actual consumption. 

4.6. Model Performance Evaluation 

Table 3 presents the evaluation metrics for the CatBoost ML algorithm on the training set and 

the test set. The training set has an Mean Squared Error (MSE) of 0.146, while the test set has an 

MSE of 1.152. The RMSE, which indicates the proximity of predicted values to actual values, is 

0.382 for the training set and 1.073 for the test set. A higher R-squared value signifies a greater ability 

of the model to explain the variability in the target parameter, whereas a higher value represents best 
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fit. The R-squared value is 0.999 for the training set and 0.998 for the test set. The MAPE is 1.139% 

for the training set and 1.142% for the test set. The CatBoost ML algorithm demonstrates strong 

performance in predicting energy consumption for the dataset. 

Table 3.  Evaluation matrices of CatBoost ML algorithm 

ML Algorithm MSE RMSE R2 MAPE 
CatBoost – Training Set 0.146 0.382 0.999 1.139 

CatBoost – Test Set 1.152 1.073 0.998 1.142 

 

Fig. 11 shows the feature importance plot of the CatBoost regression model. The provided values 

represent the feature importance scores of different features in a predictive model. Feature 

importance scores indicate the contribution of each feature to the model's prediction performance. 

Specifically, the higher the importance score, the more influential the feature is in making accurate 

predictions. CO2 (tCO2) feature has the highest importance score of 64.552. This indicates that the 

CO2 emissions have the most significant impact on the model's predictions. 

Lagging_Current_Reactive.Power_kVarh feature has an importance score of 27.478. It is the second 

most important feature in the model. Reactive power consumption refers to the power oscillations 

between the source and the load. A high value of this feature might suggest inefficiencies in the 

system, affecting energy consumption. Lagging_Current_Power_Factor has an importance score of 

4.584, this feature contributes to the model's predictions. Power factor is a measure of how effectively 

electrical power is being used in the system. A low power factor can indicate inefficient use of energy. 

‘Load_Type’ is categorical feature has an importance score of 1.922. While not as significant as the 

previous features, it still contributes to the model's predictions. The type of load might affect energy 

consumption patterns. ‘Leading_Current_Power_Factor’ feature has an importance score of 1.283. 

Similar to lagging power factor, the leading power factor measures the efficiency of power usage. Its 

contribution is less compared to other features. ‘Leading_Current_Reactive_Power_kVarh’ feature 

has the lowest importance score of 0.181. It seems to have the least influence on the model's 

predictions compared to other features. 

 

Fig. 11. Feature importance plot 

Table 4 compares the proposed CatBoost approach with existing methods. The evaluation 

metrics used are RMSE and MAPE for both training and test sets. The comparison includes GLM, 

CART, SVM, kNN, and RF. The results clearly indicate that the proposed CatBoost model 

outperforms all the existing methods in terms of both RMSE and MAPE on the training set. 

Additionally, on the test set, CatBoost performs better than GLM, CART, and kNN in terms of RMSE 

and outperforms all the methods in terms of MAPE. These results strongly suggest that CatBoost is 

a promising approach for energy consumption prediction. 
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One of the reasons why CatBoost outperforms some of the other methods like SVM and kNN 

is its ability to efficiently handle both numerical and categorical features without losing valuable 

information. CatBoost's unique combination of gradient boosting and ordered boosting optimizes the 

training process, leading to faster convergence and improved performance. The technique of “ordered 

boosting” in CatBoost prevents overfitting, reducing the risk of memorizing the training data and 

ensuring better generalization to unseen data, addressing a common pitfall in other boosting 

algorithms. 

Table 4.  Comparison with existing approach 

Method ML Algorithm 
Training Set Test Set 

RMSE MAPE RMSE MAPE 

Sathishkumar et al. [40] 

GLM 4.61 16.01 4.85 16.13 

CART 3.27 13.88 3.46 14.10 

SVM 1.89 4.67 1.97 4.87 

KNN 1.59 2.89 2.99 5.33 

RF 0.5 2.45 1.12 1.28 

Proposed Approach CatBoost 0.382 1.139 1.073 1.142 

 

Furthermore, CatBoost incorporates built-in regularization techniques that help control model 

complexity and improve generalization. This is essential for achieving good performance on test data 

and avoiding the issue of overfitting. Additionally, CatBoost's robustness to handle categorical 

variables and missing data further contributes to its superior performance compared to traditional 

algorithms like GLM, CART, SVM, kNN, and RF in this specific energy consumption prediction 

task. 

The evaluation results and the analysis clearly show that CatBoost is a powerful and effective 

approach for accurately predicting energy consumption patterns, making it a valuable tool for energy 

management and conservation. Its ability to handle diverse features and its optimization techniques 

make it a promising choice for real-world applications. By utilizing CatBoost, organizations can gain 

valuable insights into energy usage, optimize resource allocation, and make informed decisions to 

reduce costs and promote sustainability. 

5. Conclusion 

In this study, we developed a CatBoost regression model to accurately predict energy 

consumption patterns based on various parameters related to energy usage. The dataset from the UCI 

steel industry energy consumption dataset provided valuable insights into electricity consumption 

every 15 minutes throughout the year. 

The CatBoost algorithm demonstrated exceptional performance in predicting energy 

consumption, outperforming existing methods such as GLM, CART, SVM, kNN, and RF in terms of 

both RMSE and MAPE on both the training and test sets. The high-performance metrics of CatBoost 

validate the robustness and effectiveness of this approach. The elimination of irrelevant features has 

led to improved model efficiency and enhanced generalization capabilities. 

Hyperparameter tuning was performed using GridSearchCV with 5-fold cross-validation. 

Overall, the developed CatBoost regression model with optimized hyperparameters can be utilized 

to accurately predict energy consumption patterns, making it a valuable tool for energy management 

and conservation. 

However, it is important to note that the model's predictions may be influenced by factors not 

included in the dataset, such as weather conditions or seasonal trends. In the future, further research 

can explore the integration of external data sources to enhance the model's accuracy, such as weather 

data or market trends. Additionally, implementing a web-based dashboard or visualization tool can 

provide real-time insights and alerts for energy consumption patterns, enabling proactive 

maintenance and optimizing energy costs. As industries increasingly prioritize sustainable practices, 
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the methodologies and models developed herein could serve as a cornerstone for the implementation 

of more sophisticated and efficient energy management systems, fostering a new era of innovation 

and conservation in the realm of industrial energy consumption. 
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