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1. Introduction  

Technological development in the field of robots, especially mobile robots, has been rapidly 

increasing in the last few decades, specifically in the features of speed, accuracy, and stability. These 

features are benchmarks for technological advances in the field of robotics. This subsection reviews 
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 Self-balancing robots are designed to maintain an upright position without 

toppling over. By continuously adjusting their center of mass, they can 

maintain stability even when disturbed by external forces. This research 

aims to achieving and maintaining balance is a complex task. Self-

balancing robots must accurately sense their orientation, calculate 

corrective actions, and execute precise movements to stay upright. 

Eliminating disturbances and measurement noise in self-balancing robot 

can enhance the accuracy of their output. One common technique for 

achieving this is by using Kalman filters, which are effective in addressing 

non-stationary linear plants with unknown input signal strengths that can 

be optimized through filter poles and process covariances. Additionally, 

advanced Kalman filter methods have been developed to account for white 

measurement noise. In this research, state estimation was conducted using 

the Fish Swarm Optimization Algorithm (FSOA) to provide feedback to 

the controller to overcome the effects of disturbances and noise in the 

measurements through the designed filter. FSOA mimics the social 

interactions and coordinated movements observed in fish groups to solve 

optimization problems. FSOA is primarily used for optimization tasks 

where finding the global optimal solution is desired. The results show that 

the use of an optimized Kalman filter with FSOA on a two-wheeled mobile 

robot to handle system stability reduces noise values by 38.37%, and the 

system reaches a steady state value of 3.8 s with a steady error of 0.2%. In 

addition, by using the proposed method, filtering disturbances and 

measurement noise in self-balancing robot can help improve the accuracy 

of the self balancing robot’s output. System response becomes faster 

towards stability compared to other methods which are also applied to two-

wheeled mobile robots. 
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and examines the relevant literature on self-balancing robots in accordance with research purposes. 

Self-balancing is a widely investigated topic due to its potential for advancing robotics, enabling 

practical applications, enhancing human-robot interaction, fostering research and development, and 

driving technological progress. The ability to maintain balance is a fundamental requirement for robots 

to operate effectively and safely in complex and dynamic environments.  Self-balancing robots require 

robust and efficient control systems to maintain stability and respond to disturbances. The required 

control systems design that incorporate sensor integration, actuator control, feedback loops, and signal 

processing techniques. This process helps advance the field of control system engineering by 

exploring new approaches, optimizing system performance, and ensuring reliability. 

Self-balancing has become a widely investigated topic in the last decade, possessing a significant 

role in the field of robotics and control system engineering [1]. By explaining the inverted pendulum 

where the self-balancing robot has a performance that resembles a pendulum, this study mainly 

examines the self-balancing robot model and its origins. There are several control systems that can be 

used on self-balancing robots. Therefore, this study describes the control system used and their 

respective mathematical models. The control systems used include Linear Quadratic Regulator 

(LQR), Pole placement, Proportional-Integral-Derivative (PID), state estimator, and Kalman filter as 

an estimator.  

This study focuses on the efficiency of different control algorithms, such as Proportional, 

Integral, and Derivative (PID), pole placement, and adaptive control, in an artificial robot called 

Bimbo. The robot is built with modules for movement and position control. In this robot, we applied 

a Kalman filter to get the Roll angle of the Inertial Measurement Unit (IMU) [2]. The balance and 

tracking control of a two-wheeled mobile robot has been studied and analyzed. Numerical simulations 

to test the effectiveness of each controller has been carried out with three types of control strategies, 

including PID-based parallel dual feedback, serial dual feedback, and hybrid optimal control using 

Feed-forward PID and Feedback LQR. For different set points, the hybrid controller can achieve better 

performance than the other two methods. Better tracking and position balancing have been detected 

in the hybrid control algorithm, with zero overshoot and a lower settling time. 

Recent research has explored the use of metaheuristic algorithms as state observers in 

deterministic systems without incomplete information about the state vector. For example, research 

on a mini-batch adaptive method of random search (MAMRS) has been tested on a satellite 

stabilization problem to find the optimal control. Besides, metaheuristic algorithms have also been 

used in the field of power system state estimation due to their versatility and adaptability. For example, 

CSA has been proposed for optimal power system state estimation, while SKF has been used to make 

estimations of the system’s states using a population of agents. GA has also been used to improve the 

search speed of the parameters in motors using dynamic relationships and parameter estimation. 

Overall, metaheuristic algorithms are reported as effective tools for state estimation due to their ability 

to adapt to different problems [3]-[5]. 

In addition, filtering disturbances and measurement noise in self-balancing robot can help 

improve the accuracy of the self balancing robot’s output [6]-[7]. Kalman filters are often used for 

this purpose since they account for non-stationary linear plants with unknown intensities of input 

signals [8]. Besides, the filters can be tuned using filter poles and process covariances. Additionally, 

improved Kalman filter methods have been developed for white measurement noise [9]. In this 

research, state estimation was carried out using the Fish Swarm Optimization Algorithm (FSOA) and 

fed back to the controller. It is expected that the designed filter will overcome the disturbance and 

noise measurements [10]. By combining FSOA and Kalman filters, the optimization capabilities of 

FSOA are utilized to search for the global optimal solution, while the state estimation abilities of the 

Kalman filter refine the estimation of the system's state based on available measurements [11]-[12]. 

This integration can be beneficial in control system optimization problems where both parameter 

tuning and state estimation are crucial for achieving desired outcomes [13]. 
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2. Method 

2.1. Kalman Filter 

Kalman Filter is a mathematical algorithm that optimizes the use of imprecise data in a linear 

system with Gaussian error which continuously updates the best estimate or estimate of the state of 

the system [14]. Kalman Filter estimates the state of the process at a time and then takes the feedback 

in the form of a noise output. The Kalman filter represents the dynamic system in a state-space form, 

consisting of state variables, measurements, and control inputs [15]. The state variables describe the 

internal system states, while the measurements provide noisy or incomplete observations of the system 

[16]. The Kalman filter predicts the current state of the system based on the previous state estimate 

and the system dynamics. It utilizes the state transition matrix and control inputs (if available) to 

propagate the state forward in time, providing an estimate of the system's future state. The 

measurement update step is the core of the Kalman filter [17]. It combines the predicted state estimate 

with the actual measurements, taking into account the uncertainty of both the measurements and the 

predicted state [18].  

The Kalman gain, computed from the covariance matrices of the state and measurement noise, 

determines the weight given to the measurements in the update process. The Kalman filter operates in 

a recursive manner, continuously updating the state estimate as new measurements become available. 

By incorporating feedback from previous estimates, the filter adapts to changing system conditions, 

providing real-time estimation of the system state [19]. 

In the Kalman Filter there is a time update (prediction equation) that can predict the value of the 

state vector which is then used for feedback. Calculation or measurement update or observation update 

is a correction equation that is used as a state vector correction. So, the Kalman Filter process of 

prediction and correction occurs. Kalman Filter will predict a state space and will correct the value of 

whether the system output is the same as the desired input [20]-[21]. 

The Kalman filter operates in a recursive manner, continuously updating the state estimate as 

new measurements become available. By incorporating feedback from previous estimates, the filter 

adapts to changing system conditions, providing real-time estimation of the system state [22]-[25]. 

The Kalman Filter shows the general problem of estimating a state in a discrete time control process 

governed by the equation of a stochastic linear change, in general it can be expressed in the equation 

of state: 

 𝑥𝑘+1 = 𝐴𝑥𝑘 +  𝐵𝑢𝑘 + 𝑤𝑘   (1) 

With a measurement 𝑧 ∈ 𝑅𝑚. 

 𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘   (2) 

And output equation in (3). 

 𝑦𝑘 = 𝐶𝑥𝑘 + 𝑧𝑘 (3) 

Where: 

A  = state matrix 𝑛 × 𝑛 

B = 𝑛 × 1 matrix that relates the control input to a state 

C = output matrix 

𝑥𝑘 = process state vector 𝑛 × 1 at time kt 

𝑤𝑘 = process noise vector which is assumed to be a white series with known covariance structure 

𝑣𝑘 = measurement noise vector which is assumed to be a white series with a known  

 covariance structure and zero cross-correlation with the 𝑤𝑘 series 

𝑦𝑘 = output vector  

𝑢𝑘 = input vector 

𝑧𝑘 = measurement vector at time 𝑡𝑘 

𝐻𝑘 = 𝑚 × 𝑛  matrix which gives an ideal relationship between measurements and vectors 
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The random variables 𝑤𝑘 and 𝑣𝑘 describe process and measurement noise. These variables are 

assumed to be independent of one another, white (white) and with a normal probability distribution. 

The Kalman Filter equation is divided into two parts, namely the time update equation and the 

measurement update equation. The time update equations account for the future plans of a current 

state and the error covariance estimates to obtain an a priori estimate for the next step. The 

measurement update equations are used as feedback, integrating a new measurement into the a priori 

estimate to obtain an updated a posteriori estimate [26]. 

2.2. Optimize the Gain of Kalman Filter 

The Kalman filter is used to estimate the unmeasured states of a system based on available 

measurements and a mathematical model. The observer state feedback combines the estimated states 

from the Kalman filter with a control law to generate control signals for the system. The gain of the 

Kalman filter, also known as the Kalman gain, determines the weight given to the measurements and 

the predicted states in the estimation process. Optimizing the Kalman gain involves finding a balance 

between the accuracy of the state estimation and the desired control performance [27]-[30].  

The Kalman gain is typically determined by minimizing a cost function that captures the error 

between the estimated states and the actual states. This is often done through a process called Kalman 

filter design or Kalman filter tuning [31]. The specific method for tuning the Kalman gain can vary 

based on the system and the available information. In this research optimizing the Kalman gain using 

Fish Swarm Optimization Algorithm (FSO) [32]. 

FSO is based on the collective behavior of fish schools. It imitates the movement and interaction 

of fish in search of optimal solutions. Each fish represents a potential solution to the problem, and the 

whole school represents the population.  In FSO, each fish navigates the search space using three main 

behaviors: attraction, repulsion, and orientation. Attraction enables fish to move toward the current 

best solution, repulsion helps avoid overcrowding, and orientation allows fish to explore the search 

space efficiently [33]. Fish in FSO communicate with each other using a chemical substance called 

the 'pheromone.'  

Fish exchange information about the quality of solutions and use this information to update their 

behavior and guide their movements. FSO tends to focus more on exploration by utilizing the 

orientation behavior, which allows fish to explore different regions of the search space [34]. This can 

lead to slower convergence but potentially better exploration of the solution space. FSO has a 

relatively simpler implementation compared to PSO. It requires fewer parameters to tune, making it 

easier to implement and understand.  

2.3. Proposed Method 

A two-wheel balancing robot is a mobile robot that has two wheels on its right and left sides. 

This robot cannot be balanced without control. This two-wheeled robot is a combination of a wheeled 

mobile robot and an inverted pendulum system. Meanwhile, an inverted pendulum cannot be moved 

by itself, and it uses a gyroscope and accelerometer to sense the tilt of the vertical axis. To overcome 

the tilt, the controller generates a torque signal to each motor to prevent the failing system to the 

ground. In this study, the proposed hybrid approach (Kalman Filter and FSOA) in improving the state 

estimation compared to the Kalman Filter alone [35]. 

In addition, Kalman Filter is a mathematical algorithm that optimizes the use of inaccurate data 

in a linear system with Gaussian error. With Gaussian error, it continuously updates the best estimate 

of the system’s condition [36]. Kalman Filter estimates the state of the process at a time and then takes 

the feedback as noise output. Kalman Filter is also equipped with a time update (prediction equation) 

that can predict the value of the state vector, which is further used for feedback. Calculation, 

measurement, or observation update is a correction equation used as a state vector correction. So, the 

Kalman Filter has a process of prediction and correction. Besides, it also predicts a state space and 

corrects the system outputs, following the desired input [37]. 
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As a self-balancing platform, Kalman’s implementation also includes the Kalman filtering 

process. Kalman filtering is an iterative mathematical process using a multi-dimensional matrix and 

input data as equations to track objects by estimating the true values of velocity and position [38]. 

Basically, it focuses on minimizing variation or uncertainty in continuous estimates concerning 

velocity and position data measurements. Meanwhile, a state matrix (multi-dimensional) is formed to 

store the velocity and position data of the object being tracked. The process covariance (error) matrix 

contains errors in the estimation process. Further, the slope angle of the filtered Kalman is compared 

with the complementary angle filtered to see the difference in the estimated actual angle to determine 

the optimal filtering method. 

The Fish-Swarm Optimization Algorithm (FSOA) is used to optimize the signal that has been 

filtered by Kalman. Then, the signal is returned to be compared with a reference value [39]. The 

returned signal is expected to drive the output value, following the reference value. The block diagram 

is shown in Fig. 1. 

 

Fig. 1. Block diagram stabilizing mobile robot using Kalman Filter and fish swarm optimization algorithm 

The algorithm applied to FSOA to optimize the value of the Kalman Filter is discussed in the 

following. 

1. Initialize FSO parameters, such as the number of iterations (𝑖), number of fishes (𝑛), weights 

(𝑤), velocities (𝑣), and population size (𝑥𝑚) 

2. Initialize random fish positions in the search space (𝑥). 

3. Repeat steps 5 to 9 until the maximum iteration is reached. 

4. Evaluate the objective function 𝐹(𝑖) by feeding fish positions into the Kalman filter. 

𝐹(𝑖) = √∑(𝑥𝑚 − 𝑥)2

𝑛

𝑖=1

 
(

(4) 

5. Calculate fitness values and select the best fish. 

6. Compute the fish displacement vector by considering the weight and velocity. 

7. Update new fish positions. 

8. Repeat steps 5 to 9 until the maximum iteration is reached. 

The best fish output is the optimal solution for improving the output from the Kalman filter. Then, 

the optimal output value is returned to the reference, and the equation is obtained by (5), the optimal 

value will be multiplied by the gain which will optimize the estimated state value. so that the robot 

will move according to the reference given, in this case the theta angle on the robot is set at 0 degrees. 

 𝑢 = −𝐾𝑥𝑜𝑝𝑡 (5) 
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2.4. Model Reference for Two-Wheeled Mobile Robot 

One of the primary challenges of designing a two-wheeled mobile robot is understanding the 

ways the robot will behave in different scenarios. Research simulation can help model the robot’s 

dynamics and simulate different scenarios to understand the robot’s responses [40]. In this study, we 

simulated the robot’s behavior when subjected to external disturbances, process noise, and 

measurement noise. For the modeling of the Two-wheeled mobile robot system, we used the 

parameters presented in Table 1. The modeling process then proceeded by constructing a state-space 

model system as the desired model reference. The model equation is displayed in (3). 

Table 1.  Parameter of the system 

Parameter Value 

𝑀𝑝 0.78 

𝑙 0.05 

𝐼𝑝  
𝑀𝑝 × 𝑙

3
 

𝑅 0.0325 

Mw 0.0775 

𝐼𝑤  
1

2
× 𝑀𝑤 × 𝑅2 

𝑔 9.81 

𝑅 0.0325 

 

Then the state-space system equation can be expressed as follows: 

 �̇� = 𝐴𝑋 + 𝐵𝑈 

𝑌 = 𝐶𝑋 
(6) 

According to the parameters mentioned in Table 1, the state space equation is described as 

follows for matrices A, B, and C according to (6). 

 

𝐴 =

[
 
 
 
 
 
 
 
0 1 0 0

0 0
−2𝑀𝑝

2 𝑙2𝑅2𝑔

(2𝑀𝑝 𝑙
2 + 𝐼𝑃)(𝑀𝑝𝑅

2 + 2𝑀𝑤𝑅2 + 2𝐼𝑤) − 2𝑀𝑝
2 𝑙2𝑅2

0

0 0 0 1

0 0
𝑀𝑝𝑔𝑙(𝑀𝑝𝑅

2 + 2𝑀𝑤𝑅2 + 2𝐼𝑤)

(2𝑀𝑝 𝑙
2 + 𝐼𝑃)(𝑀𝑝𝑅

2 + 2𝑀𝑤𝑅2 + 2𝐼𝑤) − 2𝑀𝑝
2 𝑙2𝑅2

0
]
 
 
 
 
 
 
 

  (7) 

 

𝐵 =

[
 
 
 
 
 
 
 

0

(2𝑀𝑝 𝑙
2𝑅 + 𝐼𝑃𝑅)

(2𝑀𝑝 𝑙
2 + 𝐼𝑃)(𝑀𝑝𝑅

2 + 2𝑀𝑤𝑅2 + 2𝐼𝑤) − 2𝑀𝑝
2 𝑙2𝑅2

0

𝑀𝑝𝐼𝑅

(2𝑀𝑝 𝑙
2 + 𝐼𝑃)(𝑀𝑝𝑅

2 + 2𝑀𝑤𝑅2 + 2𝐼𝑤) − 2𝑀𝑝
2 𝑙2𝑅2]

 
 
 
 
 
 
 

 (8) 

 
𝐶 = [

1 0 0 0

0 0 1 0
] (9) 

2.5.  The State Observability Matrix 

A state observer estimates state variables based on output and control variables measurements. 

In this context, the concept of observability plays a crucial role. State observers can be designed if the 

observability conditions are fulfilled. 
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Observability, as mentioned earlier, refers to the ability to determine the internal states of a 

system based on its measurable outputs. In observer state feedback, observability is crucial for the 

accurate estimation of the system states by the observer or estimator. The observer uses the available 

output measurements and the system model to generate estimates of the internal states, which are then 

utilized in computing the control signals. 

The observability of a system in observer state feedback can be analyzed by evaluating the 

observability matrix, also known as the observability Gramian. The observability matrix is constructed 

by selecting appropriate output variables and their time derivatives and arranging them into a matrix. 

The rank of this matrix determines the observability of the system. If the rank is equal to the number 

of states in the system, the system is said to be fully observable. 

A system is said to be observable if only there is a finite time 𝑇 so that the initial state 𝑥(0) can 

be determined from the observation history 𝑦(𝑡), given control 𝑢(𝑡), 0 ≤ 𝑡 ≤ 𝑇. Observable Matrix 

(𝑂𝑀) is shown in (10). The system is said to be completely observable if rank (𝑂𝑀) = 𝑛. 

 

𝑂𝑀 =

[
 
 
 
 
 
 

𝐶
𝐶𝐴
𝐶𝐴2

.

.

.
𝐶𝐴𝑛−1]

 
 
 
 
 
 

 (10) 

3. Results and Discussion 

The system simulation process began with building a two-wheeled mobile robot model using 

SimScape. Then an input signal was given. Then, a plot of the system’s response without control is 

generated. After that, we added process noise and measurement noise to test the control methods to 

be applied to the system. Before designing the estimator, we first verified that the system was 

observable. The property of observability determines whether or not we can estimate the state of the 

system based on its measured outputs. Similar to the process for verifying controllability, a system is 

observable if its observability matrix is fulfilled. 

3.1.  Modeling of Two-Wheeled Mobile Robot Using SimScape 

Fig. 2 shows the modeling process using SimScape. The modeling involved configuring the block 

solver, world frame, and mechanism configuration as input from the mobile robot plant. Then, the 

prismatic joint, rigid transform, and revolute joint blocks were utilized to construct the chassis and 

cart. In the revolute joint block, the angle data was set to the sensing-position. Meanwhile, for the 

input signal for the mobile robot, we used an initial perturbation with an initial value of 10 and a final 

value of 0. 

 

Fig. 2. Two-wheeled mobile robot using simscape 
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The chassis was built using a block of 3 plates with dimensions of [18 8 0.3] cm and a mass of 

1/4 kg. The frame port was connected to plates 2 and 3. They were connected to a pillar with a radius 

of 5mm and a length of 20 cm, as shown in Fig. 3. The block chart in Fig. 3 depicts a model of 2 

wheels built to function as a chassis stabilizer. The right and left wheels were constructed using a 

wheel body and designed with a radius of 30 mm and a length of 12.7 mm. Each of them had a mass 

of 48 g. 

 

Fig. 3. Mechanics explorer of simscape 

3.2. The State Observability of Two-Wheeled Mobile Robot 

Equation (7) enables an individual to determine the state observability matrix of the system. The 

results for the state observability matrix are shown in Fig. 4. Referring to the 𝑂𝑏 matrix in Fig. 4, rank 

(𝑂𝑏) = 4 shows that the system has a completely observable state. 

 
Fig. 4. State observability matrix (matlab result) 

3.3. Modeling of Process Noise and Measurement Noise 

The modeling of process noise and measurement noise utilized random signal blocks with 

parameters presented in Table 2. The noise will affect the motion of the chart and cause significant 

signal changes. However, the use of a Kalman Filter can minimize or even eliminate the noise.  

Table 2.  Noise parameters 

No Noise Noise Power Sample Time 

1 Process Noise 1e-5 1e-2 

2 Measurement Noise 1e-6 1e-2 
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3.4. Simulation Results of Two-Wheeled Mobile Robot Without Control 

A simulation of an uncontrolled two-wheeled mobile robot was built using Simulink with an 

initial perturbation input value of 10 and a final value of 0. In this simulation, we applied Equation 1 

for the model. Fig. 5 shows a block diagram of the two-wheeled robot without control, while Fig. 6 

illustrates the simulation results of the uncontrolled robot. From these Figures, we can observe that 

the theta measurement results do not follow the reference, with the angle of -180°. 

 

Fig. 5. Block diagram without control 

 

Fig. 6. Result of simulation without control 

3.5. State Observer Feedback for Stabilize Two-Wheeled Mobile Robot 

The main goal of observer-based state estimation is to demonstrate that the error of state 

estimation closes to zero, either exponentially or within a finite time period. This is typically 

accomplished by characterizing the error dynamics in similar means to the stability proof of control 

systems. This estimation is typically carried out using several methods, such as pole placement or 

Lyapunov functions. However, the proof of stability in observer-based state estimation generally 

assumes a “deterministic” environment in which measurement and process noise are not considered. 

On the other hand, the Kalman filter approach concentrates on state estimation for stochastic 

processes where measurement and process noise are present and taken into account. The purpose of 

the Kalman filter is to optimize the state estimation under the existence of noise and to characterize 

the associated uncertainty. It does not aim to converge the estimation error to zero since it is not 

practical due to the stochastic nature of the system. In fact, the Kalman filter has been reported to 

outperform other state estimators when the assumptions of Gaussian measurement, process noise, and 

linear dynamics are applied. The block diagram of the system with state observer feedback using the 

Kalman Filter is shown in Fig. 7. 

 

Fig. 7. Control simulation of two-wheeled mobile robot using Kalman Filter 
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The state-space model as a reference is described in the following. 

𝐴 = [

0 1 0 0
0 0 −2.1211 0
0 0 0 1
0 0 27.5333 0

] ; 𝐵 = [

0
36.96

0
85.29

] ; 𝐶 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] . 

The result is shown in Fig. 8, with the actual theta represented by the green line, the measurement 

theta being the blue line, and the estimated theta being the red line. The actual theta represents the real 

value before the addition of measurement noise, while the measurement theta is the theta value after 

the addition of measurement and processing noise. Lastly, the estimated theta is the value generated 

through Kalman Filter and returned to the initial value. 

 

Fig. 8. Result of control simulation of two-wheeled mobile robot using Kalman filter 

Then, the state estimate value generated by the Kalman filter was compared to the reference 

value. The results showed that noise still affects the output signal, and the output 𝑦(𝑡) does not match 

the reference. To address this issue, the estimated state value was optimized using the FSO algorithm 

and returned with a gain of -16, as illustrated in Fig. 9. The results of this optimization can be observed 

in Fig. 10, showing that the output response follows the reference value with reduced noise. 

 

Fig. 9. Control simulation of two-wheeled mobile robot using kalman Filter-FSOA 

In Fig. 10, the actual theta is visualized in a green line, the measured theta is represented by the 

blue line, and the estimated theta is in the orange line. The result shows that the estimated theta follows 

the reference with a 0.2% error steady-state.  

 

Fig. 10. Result of control simulation of two-wheeled mobile robot using Kalman Filter-FSOA 
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A comparison of system performance is shown in Table 3. The methods being compared were 

without control, state observer feedback using the Kalman Filter, as well as state observer feedback 

using the Kalman filter and fish swarm optimization algorithm. 

Table 3.  Results obtained for the proposed hybrid state observer feedback 

Method Rise time (s) Settling time (s) ESS (%) MAE (%) SNR (dB) 

Without control - - -180 - -35.1625 

Kalman Filter - - 0 5.7854e+03 -17.4808 

Kalman Filter and FSOA 2 3.8 0,2 1.3866e+03 -7.7863 

  

Table 3 shows the simulation results without control, indicating that the steady-state system error 

is -180% and the signal-to-noise ratio is -35.16 dB. The simulation results of the state observer 

feedback using the Kalman Filter showed that the steady-state error of the system is 0%, with MAE 

of 5.7854e+03 and a signal-to-noise ratio of -17.48 dB. The simulation results of the state observer 

feedback using the Kalman Filter and FSOA showed the steady state error of the system is 0.2%, with 

the MAE of 1.3866e+03 and the signal-to-noise ratio of -7.7863 dB. 

4. Conclusion 

The objective of the Kalman filter is to optimize the state estimation under the noise and 

characterize the associated uncertainty. It does not converge the estimation error to zero since it is not 

practical due to the stochastic nature of the system. The simulation results showed that the state 

feedback from the Kalman Filter does not match the reference model, suggesting that it is optimized 

using the Fish Swarm Optimization Algorithm (FSOA). Thus, the output response from the Kalman 

Filter and FSOA was compared to the output response from the Kalman Filter. The comparison results 

suggested a decrease in MAE by 61.33% and a decrease in SNR by 38.37%. The observed decrease 

in MAE and improvement in SNR when combining the Kalman Filter and FSOA have practical 

implications such as enhanced state estimation, improved system performance, noise reduction, 

increased stability and control, enhanced decision-making, and improved optimization performance. 

These implications are valuable in a wide range of applications, including control systems, robotics, 

autonomous systems, and various domains where accurate state estimation is crucial for achieving 

desired outcomes. While FSOA is an effective optimization algorithm, exploring alternative 

optimization algorithms can provide different perspectives and potential improvements. Algorithms 

such as Particle Swarm Optimization (PSO), Genetic Algorithms (GA), or Simulated Annealing (SA) 

can be considered as alternatives. Each algorithm has its own strengths and weaknesses, and 

experimenting with different optimization techniques can help find the one that suits the specific 

problem and system dynamics better, leading to improved state estimation accuracy. 
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