
IJRCS
International Journal of Robotics and Control Systems

Vol. 3, No. 4, 2023, pp. 704-727

ISSN 2775-2658

http://pubs2.ascee.org/index.php/ijrcs

 https://doi.org/10.31763/ijrcs.v3i3.1022 ijrcs@ascee.org

Finding and Tracking Automobiles on Roads for Self-Driving

Car Systems

Wael Farag a,1,*, Mohamed Abouelela a,2, Magdy Helal a,3

a College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
1 wael.farag@aum.edu.kw; 2 mohamed.abouelela@aum.edu.kw; 3 magdy.helal@aum.edu.kw

* Corresponding Author

1. Introduction

The main reasons for installing ADAS subsystems in current vehicles are to increase safety,

decrease traffic accidents, and improve comfort and the driving experience [1]-[3]. Major automakers

have started implementing a variety of high-tech ADAS features in recent years [4][5] such as lane-

departure warning (LDW), anti-lock braking system (ABS), electronic stability control (ESC) [6],

lane-keep assist (LKA) [7], etc. These features signify slow but steady progress in the direction of a

potential future with secure, completely autonomous cars [8]-[12].

The most recent ADAS features, such as collision warning, emergency braking, automated urban

driving, autonomous highway driving (Autopilot), collaborative maneuvering, and automated parking

are all examples of automated driving technologies, that call for increasingly quick and accurate

finding and tracking of automobiles on roads [13], which is one of the very difficult and demanding

tasks. These cars’ relative positions in relation to the motorway, the assessment and verification of the

ARTICLE INFO ABSTRACT

Article history

Received April 30, 2023

Revised May 21, 2023

Accepted October 02, 2023

 Road-object detection, recognition, and tracking are vital tasks that must

be performed reliably and accurately by self-driving car systems in order

to achieve the automation/autonomy goal. Other vehicles are one of the

main objects that the egocar must accurately detect and track on the road.

However, deep-learning approaches proved their effectiveness at the

expense of very demanding computational power and low throughput.

They must be deployed on expensive CPUs and GPUs. Thus, in this work,

a lightweight vehicle detection and tracking technique (LWVDT) is

suggested to fit low-cost CPUs without sacrificing robustness, speed, or

comprehension. The LWVDT is suitable for deployment in both advanced

driving assistance systems (ADAS) functions and autonomous-car

subsystems. The implementation is a sequence of computer-vision

techniques fused together and merged with machine-learning procedures

to strengthen each other and streamline execution. The algorithm details

and their execution are revealed in detail. The LWVDT processes raw RGB

camera pictures to generate vehicle boundary boxes and tracks them from

frame to frame. The performance of the proposed pipeline is assessed using

real road camera images and video recordings under different

circumstances and lighting/shading conditions. Moreover, it is also tested

against the well-known KITTI database, achieving an average accuracy of

87%.

Keywords

Autonomous Driving;

Self-Driving Vehicle;

Computer Vision;

Car Detection;

Car Tracking;

ADAS;

Machine Learning

This is an open-access article under the CC–BY-SA license.

http://pubs2.ascee.org/index.php/ijrcs
https://doi.org/10.31763/ijrcs.v3i3.1022
mailto:ijrcs@ascee.org
mailto:wael.farag@aum.edu.kw
mailto:mohamed.abouelela@aum.edu.kw
mailto:magdy.helal@aum.edu.kw
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

705
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 3, No. 4, 2023, pp. 704-727

Wael Farag (Finding and Tracking Automobiles on Roads for Self-Driving Car Systems)

automobile’s movement direction, and the correct localization of possible automobiles in camera

pictures or LiDAR data are necessary for successfully detecting the other vehicles on the road.

The primary instruments that enable the ability to understand the neighboring and distant

environments for the tracking, identification, and detection of moving automobiles are thought to be

computer vision techniques. Finding specific patterns, characteristics, or signals in images, like color

distributions, colored segments, gradients, and edges, is the main constituent of the method that speeds

up or directs the vehicle-detecting procedure.

The method utilized in this publication, called LWVDT which is a lightweight automobile

finding and tracking, concentrates on a thoughtful balance between the three below-listed goals:

1) Precise on-road vehicle detection from pictures captured by the car's camera mounted on the front

windshield.

2) Quick enough to enable the autonomous car to make fast and precise decisions and follow up

with them.

3) Avoid complicated architecture (e.g., manageable memory necessities and computing

complexity) which can be implemented using inexpensive CPUs in real-time, such as those

commonly used in ADAS building blocks.

Further, the methodology combines cutting-edge hand-crafted features that have been extracted

from camera pictures along with a reliable classifier developed using machine-learning techniques in

order to detect cars using cutting-edge hand-crafted features. This method accomplishes the coming

objectives:

1) The extracted hand-crafted features can be combined and adjusted flexibly, as some of them

can be integrated to create a so-called "feature vector". Its adaptability enables some sort of color

channels that has been selected from various color spaces to be included in the feature vector.

Additionally, you can customize the LWVDT pipeline by setting a concise number of parameters.

There is no need to reconstruct or design the entire process or entirely train the employed neural

networks repetitively as with the techniques that depend on deep learning. Such adaptability also

assists to adjust LWVDT for multiple higher or lower camera resolutions without significant loss of

precision. Also, the transparent structure of LWVDT makes it much easier to extend and improve in

the future compared to deep learning-based techniques that typically have a black-box arrangement.

2) In this method, the sophisticated feature extraction stage is executed by inexpensive CPUs in

a relatively short amount of time, and it does not require the involvement of GPUs in the process,

which is common in approaches based on deep learning.

3) The computational resources (in the form of memory requirements and computational power)

required for LWVDT are significantly less than those required for deep learning algorithms. It is

therefore more appropriate for ADAS subsystems running on classical scalar processors with thirty-

two-bit architecture.

When it comes to in-vehicle finding and recognition, execution time is as crucial as accuracy.

Instead of sacrificing runtime for accuracy, one needs to reach the balance between runtime and

accuracy. The review below shows that the methods based on deep learning have achieved substantial

success in automobile detection and have improved performance over classical approaches, but these

methods are computationally intensive and, in most cases, expensive. However, they failed to deliver

acceptable real-time performance, even with large GPUs and multi-core processors.

According to Wei et al. [14], CNN feature maps may be enhanced with context and deeper

features through the use of deconvolution and fusion techniques, improving object recognition and

addressing occlusion issues. In order to evaluate the suggested CNN improvements, images with a

resolution of 1280×384 were sourced from the KITTI dataset [15]. In order to conduct the evaluation,

high-end hardware, such as a server with the following spec: eight CPU cores with 4.20 GHz, Intel

i7-7700k, 32 GB of memory, and a GeForce GTX 1080 graphics card, has been employed. Even

ISSN 2775-2658
International Journal of Robotics and Control Systems

706
Vol. 3, No. 4, 2023, pp. 704-727

Wael Farag (Finding and Tracking Automobiles on Roads for Self-Driving Car Systems)

though, the top estimated time of 0.24 sec is reported for the inference per frame, which corresponds

to a frame rate of merely 4 frames per second.

In addition, X. Hu et al. [16] present SINet which is a convolutional neural network (CNN) that

is scale-independent for quick vehicle detection with widespread alterations. Those researchers also

suggest that the detection precision is enhanced by employing context-aware ROI pooling in

conjunction with multi-branch decision networks. Assessment experimentation was performed on

Ubuntu 14.04 employing the KITTI dataset [15] and running on a sole NVIDIA-TITAN-X GPU in

addition to eight CPUs (Intel(R) Xeon(R) E5-1620 ver3 at 3.5GHz). Even though the use of very high-

cost hardware, the stated inference time per frame is only 0.2 seconds, which corresponds to a speed

of only five frames per second even with the use of very expensive hardware.

In his MSc thesis, Xiao uses advanced vehicle detection models to assist in the detection of

vehicles [17]. A residual neural network can be used as a feature extractor in the model, and a region

proposal network can be used to identify candidate ROI extractors (regions of interest). In this study,

the main focus is on addressing the challenges associated with large-scale fluctuations so as to enhance

automobile detectors’ performance. On a GTX 1080 GPU with 11 GB of RAM, the model was able

to achieve 0.269 sec/frame for the inference task (i.e., lower than 3.7 frames per second) with a GTX

1080 GPU.

As a result of this work, the following contributions have been achieved:

1) Execution in Real-time: There are several advantages to the proposed pipeline, including the

fact that it focuses on enabling the deployment of ADAS object detection capabilities as soon as

possible on low-cost automotive hardware. The goal is to reach 10 frames per second [18] and avoid

the employment of GPUs. The throughput does not rely on iterative searches, it relies on one scan per

camera image. This is a result of using an efficient method to focus computations on picture sectors

of high importance.

2) Incorporation of numerous color spaces: In this study, we use compound color spaces to

increase the strength of extracting features and combine them into a further all-inclusive “feature

vector”. The employed classifier has been trained in several color spaces.

3) Adaptability and Flexibility: The LWVDT algorithm can be customized by tuning only a

small count of parameters. There is no need to reconstruct and design the entire process or entirely

train the employed neural networks repetitively as is the case with techniques based on deep learning.

Such manipulability also facilitates the adjustment of LWVDT for lower or higher multiple resolutions

of the camera with no significant shortfall of precision. LWVDT also has a transparent structure,

which makes future extensions and improvements much easier than deep learning-based techniques,

which typically have a black-box arrangement.

4) Reusability: The suggested procedure has the capability to be employed multiple times with

few changes to recognize more objects on the motorway, such as bikes, pedestrians, traffic lights, and

road signs.

2. Method

The LWVDT pipeline is constructed to use a sole charge-coupled device video camera (CCD).

Such a video camera ought to be fixed on the car's front windshield mirror to capture the front view

of the motorway. Nevertheless, stereo cameras are also applicable, but for the sake of simplicity, only

a front sole camera is considered in this work. To streamline the problem of detection, we

knowledgeably assume that the baseline is a perfect horizontal line due to the setting. This ensures

that the “horizon line” is in the picture and the X-axis is parallel to it (i.e. the intersection of the right

and left lane lines is projected in a plane called “Horizon” and it is determined using one of the

methods explained in [6]). However, for the sake of accuracy, LWVDT uses the front camera

calibration data to orient the image and remove visual distortion. The following steps in addition to

707
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 3, No. 4, 2023, pp. 704-727

Wael Farag (Finding and Tracking Automobiles on Roads for Self-Driving Car Systems)

Fig. 1 provide an overview of the overall procedure and clarify the combination and collaboration of

the technologies used:

1) Calibration of the Camera: The supplied color picture to the LWVDT pipeline is supposed to

be an RGB 1200x720 in size. Then, the algorithm initially removes the distortion and adjusts the

alignment using the checkerboard image camera calibration method. This camera calibration method

is performed merely once when the LWVDT algorithm is initialized, instead of every iteration/frame,

therefore, it does not affect the real-time functionality.

2) Conversion of Color spaces: The calibrated picture is then transformed to grayscale and

multiple color spaces [19] (YCrCb, HSL, LAB, HSV, YUV, LUV, etc. [20]). Each color space has

its own unique characteristics that increase LWVDT performance. Not all of these color spaces are

included in the final LWVDT pipeline. The final pipeline has been established and will be detailed

later, and discussed in more detail in a later section of this study. Some of such color space

transformations are done through research, analysis, testing, and trial-and-error to reach that goal.

3) Extraction of Features: Once the color and grayscale space transformation steps got carried

out, numerous features are extracted from the calibrated camera image, such as the Histogram of

Orientation Gradients (HOG) [21], color space/spatial properties [22], and color histogram properties

[23]. How those features are extracted is detailed in the next section. Those properties (features) are

then assimilated to create a long vector given the name "feature vector".

Fig. 1. The LWVDT execution process

ISSN 2775-2658
International Journal of Robotics and Control Systems

708
Vol. 3, No. 4, 2023, pp. 704-727

Wael Farag (Finding and Tracking Automobiles on Roads for Self-Driving Car Systems)

4) Classification into vehicles or not: Those feature vectors are then supplied to a classifier that

separates vehicle and non-vehicle images. The support vector machine (SVM) classifier is

constructed, employed, and trained offline [24] to recognize feature vectors that represent vehicles

and those that do not (the ones that represent vehicles will move on to the next step). Full creation

and learning of the SVM classifier are detailed in the coming sections (no. 6).

5) Possible automobile object finding: Afterwards, the vehicle images are separated from non-

vehicle images by classifying the feature vectors, prospective automobile entities in the camera

pictures are found by means of a combination of SVM classifier and sliding windows, and the

calibrated camera pictures are scanned to find and identify these automobile objects [25]. Scans are

not performed on fully calibrated camera images, but the ROI (regions of interest) are identified and

separated from each picture to execute this comprehensive search in it [26][27] with the lowest

computational load. Therefore, unwanted picture details are masked to accelerate vehicle boundary

finding, enrich the concentration and precision of the finding process, and produce potentially

accurate car boxes.

6) Sizing and labeling of vehicle bounding boxes: The outcome of the previous scanning

process is employed to create an active heatmap that gathers potential automobile boxes. The

duplicated or overlapped true-positive automobile boxes are gathered into larger boxes and marked

correspondingly.

7) Automobile bounding boxes drawing: In the step that terminates the process, marked boxes

are sketched on the primary camera or frame image. In favor of demonstration purposes, real-life

examples of the resulting street boundaries are depicted over the primary color picture, as shown in

Fig. 2 and Fig. 3.

Fig. 2. Identified automobile boundary by the LWVDT technique

Fig. 3. Identified automobiles’ boundaries by the LWVDT technique

709
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 3, No. 4, 2023, pp. 704-727

Wael Farag (Finding and Tracking Automobiles on Roads for Self-Driving Car Systems)

3. Overview of Histogram of Oriented Gradients

The HOG feature descriptor is used in image processing and computer vision for the purpose of

recognizing and detecting objects in images and video [21]. As an example, to find a definite object

‘𝑂𝑏𝑗’ in the camera picture, you need to follow these steps:

1) The camera picture is transformed into a grayscale.

2) Initially, create a rectangular (or squared) window with a size of 64 pixels high and 64 pixels

wide (those dimensions of the created window can be selected arbitrarily, and be determined by

the designer's selection).

3) Employ it to examine the gray camera picture and search for ‘𝑂𝑏𝑗’. The examination is performed

by moving the window vertically and horizontally by a stride of 8 bits (as an instance).

4) Of course, the object 𝑂𝑏𝑗 can have various sizes and can fill a larger or smaller portion of the

picture. Hence, the investigation would be performed not only on the first initial window (64×64)

but also on a sequence of (pyramids-like) windows, such as 80×80, 96×96, 112×112, etc., with a

step size of 16 bits (as an instance). The pyramid in this window corresponds to a bigger portion

of the original camera picture where 𝑂𝑏𝑗 or part of it may be within one of them.

5) With the sliding of the window, at each step, HOG features are calculated and linked to the

corresponding window center location for “feature localization”.

In order to calculate the HOG features, the entry point to the technique is assumed to be a specific

window ‘𝑊𝐼’ from a grayscale picture (feasibly a pyramid). As illustrated in Fig. 4, the continuation

steps are as follows:

1) 𝐺𝑥 and 𝐺𝑦 (the two components of the gradient) are computed out of the gradient of 𝑊𝐼 by

median difference in equation (1) and (2).

 𝐺𝑥(𝑟, 𝑐) = 𝑊𝐼(𝑟, 𝑐 + 1) − 𝑊𝐼(𝑟, 𝑐 − 1) (1)

 𝐺𝑦(𝑟, 𝑐) = 𝑊𝐼(𝑟 − 1, 𝑐) − 𝑊𝐼(𝑟 + 1, 𝑐) (2)

where the row and column counts of pixels are r and c respectively in window 𝑊𝐼.

Fig. 4. Workflow of the Histogram of Oriented Gradients

ISSN 2775-2658
International Journal of Robotics and Control Systems

710
Vol. 3, No. 4, 2023, pp. 704-727

Wael Farag (Finding and Tracking Automobiles on Roads for Self-Driving Car Systems)

2) The computed slope (e.g. gradient) is transformed to polar coordinates and the angle is

restrained from 0° to 180° as equation (3) and (4): Consequently, the gradient pointing in the opposite

direction is computed as (3) and (4).

 𝐺 = √𝐺𝑥 + 𝐺𝑦 (3)

 𝜃 =
180

𝜋
(𝑡𝑎𝑛2

−1 (
𝐺𝑦

𝐺𝑥
) 𝑚𝑜𝑑 𝜋) (4)

where 𝑡𝑎𝑛2
−1is the 4-quadrant reciprocal that produces values amongst -π → π.

3) By the division of the window 𝑊𝐼 into non-overlapping cells and bordering each other at the

same time with a size of C×C pixels (C=8 in most cases), a cell orientation histogram can be created.

For each cell, compute a histogram of gradient directions binned into 𝐵 bins (possibly B=9). If the

bins are numbered from 0 to 𝐵 − 1 and have width 𝑤 =
180

𝐵
, then bin i has bounds [𝑤𝑖, 𝑤(𝑖 + 1)]

and center 𝑐𝑖 = 𝑤(𝑖 +
1

2
). Thus, the contribution of a pixel of 𝐺 magnitude and direction value of 𝜃

to the vote can be calculated as equation (5) and (6).

 𝑣𝑗 = 𝐺
𝑐𝑗+1 − 𝜃

𝑤
 𝑡𝑜 𝑏𝑖𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑗 = [

𝜃

𝑤
−

1

2
] 𝑚𝑜𝑑 𝐵 (5)

and the vote:

 𝑣𝑗+1 = 𝐺
𝜃 − 𝑐𝑗

𝑤
 𝑡𝑜 𝑏𝑖𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 (𝑗 + 1) 𝑚𝑜𝑑 𝐵 (6)

Such a format is named voting by bilinear interpolation. Moreover, the resultant cell histogram is a

vector with B +ve numbers.

4) A block normalization phase is afterward performed by assembling the cells into overlapping

blocks of 2×2 cells each. Hence, the size of each block is 2C by 2C pixels. Therefore, two vertically

or horizontally proximate blocks overlap by a couple of cells. To be exact, the block increment is 𝐶

pixels. Therefore, each internal cell is masked with 4 blocks. The 4-cell histograms for each block are

centered around a sole block feature 𝑏 and after that block feature ‘𝑏’ is normalized by its Euclidean

norm as equation (7).

 𝑏 ←
𝑏

√‖𝑏‖2 + 𝜖
 (7)

where ϵ is a miniature +ve amount that does not allow dividing by zero into the blocks that may have

zero gradients.

5) The block features that have been normalized are then glued together into a vector ℎ which is

a sole normalized HOG feature as in the (8) and (9).

 ℎ ←
ℎ

√‖ℎ‖2 + 𝜖
 (8)

 ℎ𝑛 ← min (ℎ𝑛, 𝜏) (9)

where ℎ𝑛 is the 𝑛𝑡ℎ value in ℎ and 𝜏 is the +𝑣𝑒 ceiling value (𝜏 = 0.2). Moreover, trimming the

values in ℎ below 𝜏 (after initial normalization) makes sure that very big gradients do not have an

extreme effect as they eventually may make all other image details washed out. A final normalization

step renders the HOG feature not relying on the overall picture contrast. For the matter of illustration,

an example of technique output is illustrated in Fig. 5.

711
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 3, No. 4, 2023, pp. 704-727

Wael Farag (Finding and Tracking Automobiles on Roads for Self-Driving Car Systems)

Fig. 5. HOG got applied to a car image with the results shown

4. Classification using Support Vector Machine algorithm

A supervised training model called the Support Vector Machine (SVM) [27] analyzes data used

in regression and classification analysis [28][29]. An SVM training algorithm creates a model that

categorizes new examples corresponding to one of two categories given a set of training examples

that have each been denoted as belonging to one of the categories. By doing this, the technique can be

described as a binary linear classifier which is non-probabilistic. Given 𝑛 training points in a dataset

of the equation (10).

 (�⃗�1, 𝑦2), … , (�⃗�𝑖, 𝑦𝑖), … , (�⃗�𝑛, 𝑦𝑛) (10)

where 𝑦𝑖 represents the class to which the point �⃗�𝑖 belongs and can either be 1 or -1. Each one is a

real vector in p dimensions. Finding the "maximum-margin hyperplane," which is expressed in a way

to maximize the separation between the hyperplane and the closest point �⃗�𝑖 from either cluster, is

necessary to separate the cluster of points for which 𝑦𝑖 = 1 from the cluster of points for which 𝑦𝑖 =
−1. Any hyperplane can be expressed as the collection of �⃗�-satisfying points as equation (11).

 �⃗⃗⃗�. �⃗� − 𝑏 = 0 (11)

where �⃗⃗⃗� is the hyperplane's normal vector. The distance of the hyperplane measured from the origin

along the normal vector �⃗⃗⃗� is determined by the parameter
𝑏

‖�⃗⃗⃗�‖
 . The optimization objective function

can be expressed as equation (12) if the training data can be separated linearly.

"𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ‖�⃗⃗⃗�‖𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(�⃗⃗⃗�. �⃗�𝑖 − 𝑏) ≥ 1,

 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛" (12)

Our classifier, �⃗� ↦ 𝑠𝑔𝑛(�⃗⃗⃗�. �⃗� − 𝑏), is determined by the �⃗⃗⃗� and b that solves this problem. The hinge

loss function is introduced as equation (13) if the training data cannot be linearly separated.

 max(0, 1 − 𝑦𝑖(�⃗⃗⃗�. �⃗�𝑖 − 𝑏)) (13)

If the constraint 𝑦𝑖(�⃗⃗⃗�. �⃗�𝑖 − 𝑏) ≥ 1 is met, or if �⃗�𝑖 is on the right wing of the margin, then this function

is zero. The value of the function is proportional to how far away from the margin the data are when

they are on the incorrect side of the margin. It will then be possible to solve the optimization function

as in the equation (14).

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {[
1

𝑛
∑ max(0, 1 − 𝑦𝑖(�⃗⃗⃗�. �⃗�𝑖 − 𝑏))

𝑛

𝑖=1

] + 𝜆‖�⃗⃗⃗�‖2} (14)

where the parameter 𝜆 determines how to balance two competing demands: one is to increase the

margin size, and the other is to make sure that the �⃗�𝑖 positioned in the proper wing of the margin. If

the input data can be classified linearly, the loss function's second term will become negligible for

ISSN 2775-2658
International Journal of Robotics and Control Systems

712
Vol. 3, No. 4, 2023, pp. 704-727

Wael Farag (Finding and Tracking Automobiles on Roads for Self-Driving Car Systems)

adequately low values of 𝜆, performing similarly to the hard-margin SVM. It will nevertheless

discover whether a classification law is workable or not.

If a classification law that is nonlinear must be obtained, and if the converted data points

𝜑(�⃗�𝑖) correspond to a linear classification rule, then in addition, a kernel function 𝑘 is provided that

fulfills the condition 𝑘(�⃗�𝑖 , �⃗�𝑗) = φ(�⃗�𝑖). φ(�⃗�𝑗). Therefore, the transformed spaces' classification

vector �⃗⃗⃗� satisfies as in the equation (15).

 w⃗⃗⃗⃗ = ∑ 𝑐𝑖𝑦𝑖 φ(�⃗�𝑖)

𝑛

𝑖=0

 (15)

where solving the equation (16) optimization problem yields the 𝑐𝑖 's:

 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓(𝑐𝑖 … 𝑐𝑛) = ∑ 𝑐𝑖

𝑛

𝑖=1

−
1

2
∑ ∑ 𝑦𝑖𝑐𝑖

𝑛

𝑗=1

𝑛

𝑖=1

𝑘(�⃗�𝑖, �⃗�𝑗)𝑦𝑗𝑐𝑗 (16)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑐𝑖𝑦𝑖 = 0

𝑛

𝑖=1

, 𝑎𝑛𝑑 0 ≤ 𝑐𝑖 ≤
1

2𝑛𝜆
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖

Quadratic programming can be used to solve the coefficients 𝑐𝑖 's [28], and then solve in equation

(17).

 𝑏 = w⃗⃗⃗⃗. φ(�⃗�𝑖) − 𝑦𝑖 = [∑ 𝑐𝑘𝑦𝑘 𝑘(�⃗�𝑘 , �⃗�𝑖)

𝑛

𝑘=1

] − 𝑦𝑖 (17)

Last but not least, new points (𝑧) can be categorized or classified by calculating in equation (18).

 𝑧 ↦ 𝑠𝑔𝑛(�⃗⃗⃗�. φ(�⃗�𝑖) − 𝑏) = 𝑠𝑔𝑛 ([∑ 𝑐𝑘𝑦𝑘 𝑘(�⃗�𝑘 , �⃗�𝑖)

𝑛

𝑘=1

] − 𝑏) (18)

5. Camera Calibration

A camera's display of a 3-D actual scene converts it to a 2-D one, however, the translation from

three-dimensional to two-dimensional is not flawless, leading to image distortion. Actually, compared

to their 3D appearance, objects' sizes and shapes are deformed (altered) in the final 2D image. Thus,

this distortion needs to be corrected before employing the resulting 2D camera pictures in order to

extract and evaluate the accurate and usable information.

Real cameras are built with curved lenses that produce a picture. Depending on the focus and

positioning of the objects, the light normally bends to a low or high degree along the borders of these

lenses. As a result, there is distortion along the margins of the images, making straight lines or bodies

appear to be more or less rounded than they actually are. The main source of deformation is this

phenomenon, which is known as "radial distortion”.

Furthermore, "tangential distortion" is a significant source of distortion. When the lens of the

camera is not completely aligned with the picture plane that is related to the camera sensor and parallel

to it, distortion occurs. This causes the image to tilt, making objects appear closer or farther away than

they are.

To correct for radial distortion, three coefficients are required: 𝑘1, 𝑘2, and 𝑘3. A correction

formula can be used to adjust the look of radially deformed aspects in a picture.

713
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 3, No. 4, 2023, pp. 704-727

Wael Farag (Finding and Tracking Automobiles on Roads for Self-Driving Car Systems)

In equation (19) and (20), (𝑥, 𝑦) represents an aspect in a deformed picture. To remove the

distortion from those aspects, OpenCV [30] should be used to compute r, which is the identified offset

between a point in an undeformed (adjusted) picture (𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 , 𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑) and the center of the

picture deformation, which is often the image's center (𝑥𝑐, 𝑦𝑐). This center point (𝑥𝑐, 𝑦𝑐) is also known

as the distortion center. These points are depicted in Fig. 6.

Fig. 6. Pictures with distorted and undistorted (corrected) points

 𝑥𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑥𝑖𝑑𝑒𝑎𝑙 + (1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6) (19)

 𝑦𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑦𝑖𝑑𝑒𝑎𝑙 + (1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6) (20)

Tangential distortion is accounted for by two additional coefficients: 𝑝1 and 𝑝2, and such a

deformation can be corrected using a different rectification equation, as given by equation (21) and

(22).

 𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑥 + [2𝑝1𝑥𝑦 + 𝑝2(𝑟2 + 2𝑥2)] (21)

 𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑦 + [2𝑝1(𝑟2 + 2𝑦2) + 2𝑝2𝑥𝑦] (22)

Pictures of known shapes (chessboard pictures) are employed to correct for the aforementioned

distortions. As shown in Fig. 7, designated pixels in the deformed plans are afterward mapped to

undeformed plans. Consequently, the images from the camera will be calibrated. To improve image

quality and undistort captured camera images, the following procedure is used:

1) Step 1: Locate the chessboard corners: The "cv2.findChessboardCorners()" procedure from

the OpenCv3 package [30] is employed to find the chessboard corners by means of 20 chessboard

pictures of varying sizes and orientations, as shown in Fig. 8. The detected number of corners is 9×6,

as shown in 17 of the 20 pictures shown in Fig. 8. Only 9×5 corners were detected in the other three

images. The corners are sketched with openCv3's "cv2.drawChessboardCorners()" function.

Fig. 7. Mapping from a distorted chessboard image to an undistorted one

ISSN 2775-2658
International Journal of Robotics and Control Systems

714
Vol. 3, No. 4, 2023, pp. 704-727

Wael Farag (Finding and Tracking Automobiles on Roads for Self-Driving Car Systems)

Fig. 8. Calibration pictures of chessboards with corners sketched

2) Step 2: Obtain camera matrices: To find the camera matrices, an experiment chessboard

picture that has not previously been employed in detecting the corners is employed, shadowing being

transformed to greyscale, along with the detected corners in the first step. This is done with the

"cv2.CalibrateCamera()" function. To examine the calibration worthiness, use the grey testing picture

along with the camera matrices to eliminate the deformation from this picture, as displayed in Fig. 9.

Fig. 9. A testing picture of a chessboard with deformation removed

3) Step 3 - Camera matrices saving: Employing the Pickle software package [31], the camera

data (camera specs matrix and distortion coefficients) are stored in the pickle file "camera

calibration.p" to be recovered later. Fig. 10 shows how to apply the camera calibration technique to

one of the testing pictures.

Fig. 10. The influence of camera calibration (removing distortion of pictures)

715
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 3, No. 4, 2023, pp. 704-727

Wael Farag (Finding and Tracking Automobiles on Roads for Self-Driving Car Systems)

6. Realization of the Support Vector Machines Classifier

In this part, the methods to develop a classifier based on the SVM machine learning technique

mentioned in Section 4 will be described here in detail, while it will be given the acronym "SVMC".

6.1. Preparation of the Training Data

The following summarizes the data preparation stages for training the SVMC:

1) Udacity-supplied data [32][33]: Udacity-supplied data were used during the course of this

investigation. The data comprises almost equalized pictures of "non-vehicles" and "vehicles":

a) The "non-vehicle" assortments are the "GTI" [34] and "Extras" collections. Each has 8968

RGB pictures with sizes of (64, 64, 3) pixels.

b) The "vehicles" assortments comprise the "GTI" and "KITTI". Each has 8792 RGB pictures

with sizes of (64, 64, 3) pixels.

2) These assortments are 149MB in size when unzipped.

3) Augmentation of the Data: All of the images are flipped around the "Y" axis to enrich the data.

As a consequence, the training data grew to 35,520 pictures.

6.2. Visualization of the Training Data

In the sequence of execution, the following phases explain the implemented data visualization

steps:

1) Vehicle Data Display: As illustrated in Fig. 11, 50 pictures selected at random of automobile data

have been presented. Each image has a title that corresponds to its position in the training data.

2) Non-Vehicle Data Display: As shown in Fig. 12, 50 pictures selected at random of non-

automobile data have been presented. Each image has a title that corresponds to its position in the

training data.

3) Presentation of HOG features of Vehicle Data: After converting the picture to grayscale, a

selected picture of the automobile data was utilized to extract its hog characteristics. Furthermore,

the HOG aspects of non-car cases are obtained, and the results are displayed in Fig. 13.

Fig. 11. 32 automobile pictures visualization (chosen randomly)

ISSN 2775-2658
International Journal of Robotics and Control Systems

716
Vol. 3, No. 4, 2023, pp. 704-727

Wael Farag (Finding and Tracking Automobiles on Roads for Self-Driving Car Systems)

Fig. 12. 50 non-automobile pictures visualization (chosen randomly)

Fig. 13. HOG feature visualization for car and non-car pictures

6.3. Feature Extraction

In the sequence of execution, the following stages explain the realized picture feature extraction

procedures:

1) Features of Color Spatial: A method is built to obtain the influence of each image's distinct color

channels. To compute the binned color characteristics, in other words. Each image's channel is

scaled to (32×32) and raveled.

2) Features of Color Histogram: A procedure is provided to calculate the histogram of each color

channel in each picture using a specified count of pins, and afterward glue them together.

3) Computing HOG Properties: A procedure is created to calculate the HOG quantities of each

picture channel individually, which may afterward be used independently or appended

717
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 3, No. 4, 2023, pp. 704-727

Wael Farag (Finding and Tracking Automobiles on Roads for Self-Driving Car Systems)

collectively if this option is chosen. In this example, the SciKit-Image procedure "hog" [35] is

utilized.

4) Integrating Everything: The following feature vectors are produced by the aforesaid feature

extraction functions:

a) Utilizing color spatial features and “spatial size = (32, 32)”, a feature vector of 32×32×3 =

3072 items is obtained.

b) Utilizing color histogram features and “histogram bins = 32” yields a feature vector with 32×3

= 96 elements.

c) Applying the HOG extracted quantities and the values “gradient orientations cells = 9”, “pixels

per cell = 8×8”, “cells per block = 2×2”, in addition to all color channels yields a feature vector

of 7×7×2×2×9 = 1764×3 = 5292 items.

d) If all of the aforementioned procedures are employed, the final feature vector will have

3072+96+5292 = 8460 entries.

6.4. Classifier Training Steps

The procedures below are employed to construct the SVMC classifier that separates vehicle

images from non-vehicle images and train it:

1) Creating a 35,520×8,460 training data set "X" of 35,520 vehicle/non-vehicle feature vectors of

length 8,460 each. The mentioned training dataset serves as the classifier's feed-in.

2) Before joining the feature datasets, they should be scaled using the SciKit-Learn

"StandardScaler().fit()" algorithm [36]. The display of unrefined and normalized feature vectors

for an automobile picture is shown in Fig. 14.

Fig. 14. Feature vector visualization for vehicle pictures

3) Creating an output training set "Y" of 35,520×1 elements, each with a binary value of “One means

a vehicle image” or “Zero means non-vehicle image”.

4) Using the SciKit-Learn "train test split()" method, the training datasets must be randomly shuffled

and divided into 20% for validation and 80% for learning.

5) Employing the SciKit-Learn library's Linear Space Vector Machine Classifier function

"LinearSVC()” [36], the constructed classifier was trained with good precision (above 97.7%) in

practically all parameter combinations. The trained model is then put to the test on the provided

test pictures. In some situations, the outcomes were poor. Extensive experiments were carried out

with several parameter combinations, nevertheless, the outcomes were still unacceptable.

6) Following multiple tries and mistakes, it is discovered that the color spatial characteristics

consume a substantial percentage of the feature vector span (>36%) short of providing a genuine

contribution (often representing an ambiguous aspect) to the differentiation between cars and non-

cars. Furthermore, the color histogram characteristics provide a negligible (~1.1%) contribution

ISSN 2775-2658
International Journal of Robotics and Control Systems

718
Vol. 3, No. 4, 2023, pp. 704-727

Wael Farag (Finding and Tracking Automobiles on Roads for Self-Driving Car Systems)

to the feature vector as well as the differentiation between automobiles and non-automobiles. As

a result, the color special and histogram features have been eliminated from the feature vector,

leaving just the HOG features in place. As a consequence, the span of the feature vector is reduced

from 8,460 to 5,292 features alone. That is, obviously, streamlines training and real-time

performance of the method, resulting in significant reductions in processing and learning phases.

7) The updated Linear SVC classifier is built using various color spaces and a training dataset with

a size of 35,520×5,292, as shown in Table 1.

8) With the exception of "RGB," almost other color spaces yielded equivalent results. The "LAB"

color space outperforms the "YUV" color space in both learning and prediction, with the 2nd place

in the precision results. Nevertheless, when tested on test photos, "YUV" yielded more false

positives than "LAB". As a result, the "LAB" color space is chosen for the coming phases.

9) The SVC learning duration has no effect on the functioning of the LWVDT algorithm since it is

executed offline; nevertheless, the label prediction time has an effect on the performance because

it is included in the finding time for each camera frame.

Table 1. Linear SVC training results

Color

Space

Training
Time

(Seconds)

Prediction Time
for 10 Labels

(Seconds)

Test

Accuracy

HLS 8.83 0.0015 0.9831

LUV 8.79 0.002 0.9876
YUV 8.34 0.003 0.9918

LAB 5.7 0.001 0.9916

HSV 8.94 0.001 0.9865
YCrCb 7.76 0.002 0.9899

RGB 19.5 0.01563 0.9716

7. Pipeline for Car Finding and Tracking

The below-listed stages set up the procedure (LWVDT) employed in the finding and tracking of

the driving automobiles other than the egocar on the motorway. The following steps are stated here in

the same order which will be executed:

1) Detection of Lane boundaries: this procedure is primarily to find the street borderlines (i.e. the

lane lines in front of the automobile) which denote the front drivable area (exhibited in green in

Fig. 2). This procedure is fully realized in [2] and employed in this text for suitability.

2) Identifying automobiles using the sliding windows technique: for each camera frame, a

specialized function is constructed and invoked, using the below factors and limits:

a) “orient = 9” specifies the count of histogram bins per cell and is employed to extract HOG

features from pictures or video frames.

b) “pix per cell = 8” indicates the count of HOG pixels per cell. The cell will be 8×8 pixels in this

example.

c) “cell per block = 2” specifies the count of HOG cells in each block. The cell will be 2×2 cells

in this example.

d) xstart, xstop, ystart, ystop: these four arguments establish a rectangular region of interest (ROI) on

the picture or frame in which the procedure looks for an automobile using the sliding windows

approach.

e) “step size = 2” specifies the number of cells to step (or slide) to create a new search window

that will overlap the previous search window.

f) “Scale Step = 0.25” specifies the increment in search window size from one search scan to the

next.

719
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 3, No. 4, 2023, pp. 704-727

Wael Farag (Finding and Tracking Automobiles on Roads for Self-Driving Car Systems)

g) Scale_Multiplier_Start, Scale_Multiplier_End: a couple of parameters that define when the

window sizes slowly increase while inspecting the ROI region.

The procedure applies the taught developed SVMC classifier to every built search window. Fig.

15 depicts the construction of sliding windows of various sizes to cover the required ROI. This

function may be repeated numerous times with a new set of “a→g” arguments if it is needed.

Fig. 15. Sliding panes of varying sizes scan the ROI

3) Active heatmaps Creation: The purpose is to create a heatmap for each detected automobile box

for the duration of a sliding-windows scan search. This heatmap is employed to separate (or at

least reduce) the number of false-positive boxes. As illustrated in Fig. 16, a specific boundary

"HEAT_THRESHOLD" is utilized to merely pass (depending on its assigned amount) the

automobile boxes with numerous impacts (true-positive boxes).

Fig. 16. Found automobile boxes and the resulting heatmaps

4) Car boxes labeling: the overlapped true-positive automobile boxes are afterward aggregated into

larger boxes and labeled with the Sci-Kit Learn library's "label()" method.

5) Creating the labeled automobile boxes: Finally, the labeled boxes are sketched on the primary

validation picture or frame of a video, as illustrated in Fig. 2 and Fig. 3.

Fig. 17 and Fig. 18 illustrate instances of the findings obtained after running the aforesaid

algorithm on the validation pictures, which contain shadow patterns that typically mislead vision-

based techniques.

ISSN 2775-2658
International Journal of Robotics and Control Systems

720
Vol. 3, No. 4, 2023, pp. 704-727

Wael Farag (Finding and Tracking Automobiles on Roads for Self-Driving Car Systems)

Fig. 17. Automobile identification and tracking pipeline execution

Fig. 18. Automobile identification and tracking pipeline execution

8. Validation, Assessment, and Testing

The proposed LWVDT method is then tested on several images reflecting various scenarios. The

outcomes reveal that the pipeline operates admirably under various scenarios (at sunset, at full sunrise,

without shadows, with shadows, with no vehicles on the adjacent lanes, and with automobiles on the

adjacent lanes). Additionally, for healthiness testing and validation of the created algorithm, the

pipeline is applied to many real-time video instances reflecting various driving scenarios. The

LWVDT proved to be quite robust in all of the preceding situations, as illustrated in Fig. 2 and Fig. 3.

Yet, as demonstrated in Fig. 17 and Fig. 18, the scattered portions of shadows influence the accuracy

of constructing the automobiles' border boxes. Yet, the findings are still good enough and create

effective working output.

721
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 3, No. 4, 2023, pp. 704-727

Wael Farag (Finding and Tracking Automobiles on Roads for Self-Driving Car Systems)

Fig. 2, Fig. 3, Fig. 17, and Fig. 18 demonstrate the lane detection findings applied in the work of

[37][38] alongside the vehicle detection results of this paper.

In real-time execution, the pipeline proved to be acceptable as per the results reported in Table

2. The below-listed quantities are measured for a couple of investigating video records (Video1 and

Video2) using an Intel dual-core with 8GB RAM Core i5-4200U at 1.6 GHz, which is a pretty

reasonable computational platform (very suitable for ADAS applications):

Table 2. Computing Throughput for the LWVDT Pipeline

Name of the Example # of Frames
Entire Period

Min: Sec

Frames per

Second

Test Video1 1261.00 02:06 10.01

Test Video1 +
Lane Finding

1261.00 03:26 06.11

Challenging Video2 0485.00 00:39 12.52

Challenging Video2 +
Lane Finding

0485.00 01:24 05.77

The slowest recorded sorting-out throughput is 10.01 fps (frames/second). This is believed to be

appropriate for this application's desired performance [18]. As a result, using more powerful

processing gear should greatly improve the real-time outcome of the suggested procedure.

The experimental findings are evaluated for LWVDT performance using the three statistical

measures test of a binary classification [39]: Precision, Recall, and Intersection over Union (IoU). The

fraction of actual +ve samples to all positively recognized samples indicates how accurate the forecasts

are. The proportion of actual +ve samples that are accurately identified is measured by recall (e.g., the

percentage of automobile pictures, which are recognized as true automobile pictures). The IoU metric

calculates the overlapping percentage between the predicted and ground-truth areas to determine how

reliable our detector is in comparison to the ground truth. Such expressions are as in equation (23) to

(25).

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (23)

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (24)

 𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 (25)

where TP designates the count of true positives; in other words, the count of correctly identified

vehicle pictures; The count of true negatives (TN) is the count of accurately categorized non-vehicle

pictures. The count of false positives is denoted by FP. the count of photos of vehicles classed as non-

automobile; The count of false negatives (FN) is the count of non-automobile pictures sorted out as

vehicles.

The well-known average precision (AP) and intersection over union (IoU) metrics [39], which

have been extensively employed to evaluate numerous automobile recognition techniques, are

employed here to assess and compare the functioning of our proposed LWVDT to up-to-date

methodologies [40][41][42]. The Single-Shot Detector (SSD) [40] is a cutting-edge single-stage

detector that produces predictions by leveraging different feature map resolutions. Another sort of

single-stage detector is You Only Look Once (YOLO) [41], which produces predictions by seeing

unrefined picture information as a 7×7 grid. Furthermore, Faster RCNN [42] is a cutting-edge detector

that pioneers the use of a Region Proposal Network (RPN) for the extraction of Region of Interest

(RoI) candidates.

Table 3 evaluates the suggested LWVDT method against the up-to-date deep-learning-based

techniques (e.g., Fast R-CNN, SSD, and YOLO), using the KITTI dataset [14]. The deeplearning

ISSN 2775-2658
International Journal of Robotics and Control Systems

722
Vol. 3, No. 4, 2023, pp. 704-727

Wael Farag (Finding and Tracking Automobiles on Roads for Self-Driving Car Systems)

methods clearly outperform the LWVDT in terms of detection accuracy but at the penalty of massive

computing expense. For instance, YOLOv2 has a high mean precision (AP) as well as real-time

functioning on an expensive GPU (37 frames per second). Unfortunately, performance on a very high-

end CPU is very low (0.08 frames per second), if we compare it to the 12.52 frames per second of the

LWVDT on a low-end reasonably-priced CPU. For ADAS systems with comparatively low

computational resources, the feature development and deployment cost are as critical as precision, and

the car industry requires a fine balance between the two.

Table 3. Comparison of various algorithms on the KITTI vehicle-detection validation dataset

Algorithm

KITTI – Average Precision (AP)

% GPU Measure (Seconds) CPU Measure (Seconds)

Easy Moderate Hard

LWVDT 87.19 77.40 60.60
0.058

NVIDIA Tesla K80, 13GB RAM

0.079

i5-4200U @1.6 GHz (2 Cores)

SSD

[43]
97.68 93.44 80.36

0.087
NVIDIA GeForce GTX 1080Ti @1.6

GHz

16.784
i7-6820HQ (4 Cores) @ 2.70

GHz

Fast RCNN

[43]
96.55 90.21 81.79

0.093
NVIDIA GeForce GTX 1080Ti @1.6

GHz

14.721
i7-6820HQ (4 Cores) with 2.70

GHz

YOLOv2 [43] 95.73 89.15 78.69
0.027

NVIDIA GeForce GTX 1080Ti @1.6

GHz

12.597
i7-6820HQ (4 Cores) with 2.70

GHz

The LWVDT pipeline is also executed on the cloud platform: Google Colab [44] using a couple

of modes: GPU (NVIDIA Tesla K80, 13GB RAM) and TPU (v2) [44]. The top values obtained on

the GPU are 0.058 seconds while on the TPU is 0.073 seconds. These tests show that there isn't much

of a difference in performance when compared to CPU findings. The GPU contributed only a 27%

increase in computing performance, and in the meantime, the TPU contributed merely 7.5%. The

reason behind such an outcome is that the GPU is mostly used to accelerate matrix computations, and

the built algorithm includes a lot of matrix calculations. Furthermore, the TPU is primarily intended

to accelerate tensor-based computations, which are not employed in the formulation of the RT VDT

algorithm. The RT VDT algorithm's performance is also depicted in Fig. 19 and Fig. 20.

Fig. 19. Identified automobile boundary by the LWVDT methodology on the KITTI dataset - 1

Fig. 20. Identified automobile boundary using the LWVDT methodology on the KITTI dataset - 2

723
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 3, No. 4, 2023, pp. 704-727

Wael Farag (Finding and Tracking Automobiles on Roads for Self-Driving Car Systems)

9. Discussing the Employed Techniques

The below viewpoints throw more light on various technical methods and properties tried or

carried out in the previously explained pipelines:

1) Decision function: As an alternative to a simple estimation function, the decision procedure [36]

(from the SciKit-Learn module) is utilized after applying the accomplished SVMC prototype to

each built sliding window to hunt for automobiles. The judgment procedure outputs the likelihood

that the object is an automobile or not. Positive probability indicates that the identified object is

at least 50% an automobile, whereas negative probabilities indicate that the thing is higher than

50% non-car. Via creating a first-hand constraint “Confidence score”, that specifies an object’s

trust in being an automobile. The greater the positive quantity, the greater the confidence in the

thing being an automobile. The use of a decision function dramatically reduced false positives.

2) Filtering heatmaps: the calculated heatmaps on each frame are not used directly, but are filtered

using an FIR filter. Before applying a threshold, this FIR is meant to employ the current and earlier

values of the preceding four frames. This procedure assisted in smoothing out the manufactured

automobile windows as well as eliminating false positives.

3) Filtering of the Vehicle box vertices: Like heatmaps, FIRs are used to filter out the constructed

vehicle boxes. The generated vertices are not immediately used; rather, they are filtered

employing the computed quantities of the three preceding frames. Such a strategy significantly

facilitated to diminishing of the jitter of the detected final vehicle boxes' location and size for each

frame.

4) Regions of interest identification: the LWVDT algorithm has been designed to incorporate the

identification of various ROI inspecting areas by both the x- and y-axes. Such a method improved

search accuracy, reduced search time, improved search outcomes, and eliminated unwanted false

positives.

5) Down-sampling of frames count: During the course of the carrying-out tests, it was discovered

that it is not essential to search for automobiles in every frame at the camera's current sample rate

(25 FPS) because vehicle movement between frames is very slow. As a result, the in-force search

for automobiles is limited to every other frame, which cuts the video sorting out time in half and

has almost little effect on the outcome.

6) Sanity checks: Certain sanity checks, for example, are employed to enhance the indicated/detected

car boxes, such as:

a) Size of the vehicle box: The detected vehicle box size is computed and confirmed before being

sketched on the picture or video frame. This is accomplished by gauging the designated box’s

diagonal and comparing it to certain limitations.

b) Position of the vehicle box: various validation checks are introduced to confirm the location

of the indicated automobile boxes. In the testing pictures, for example, vehicle boxes cannot

be found below "y = 400".

7) Color spaces: Approximately seven distinct color spaces have been tested on both test pictures

and films. During the course of the investigation, both LAB and HSV delivered the greatest results

in terms of automobile detection and false positives. Several color spaces, such as HLS, YCrCb,

YUV, and LUV, provide equivalent results. RGB, on the other hand, generated by far the worst

outcomes. As a result, during the implementation and validation phases, HSV and LAB are used.

Upon the completion of the vehicle tracking functionality. The natural continuation of this study

will be to use visual [45], lidar [46], radar [47], and heuristic [48] strategies [49] to solve object

detection, localization [50], navigation [51], path planning [52], and stability [53] challenges.

ISSN 2775-2658
International Journal of Robotics and Control Systems

724
Vol. 3, No. 4, 2023, pp. 704-727

Wael Farag (Finding and Tracking Automobiles on Roads for Self-Driving Car Systems)

10. Conclusion

Thorough out this work, a trustworthy and refined automobile identification and tracking system

centered around hand-crafted feature extraction techniques is proposed and referred to as LWVDT.

LWVDT employs a pipeline that includes well-established color spaces like LUV, YUV, LAB, and

others. Furthermore, it employs computer-vision methods such as HOG features as well as machine-

learning techniques such as Support Vector Machines. Furthermore, the proposed procedure employs

extensive picture deformation suppression and camera calibration methods to generate undeformed

street pictures appropriate for more precise automobile findings. Furthermore, many sanity-check

approaches are utilized to strengthen the reliability of the employed methodologies. The suggested

LWVDT approach requires just unrefined RGB pictures from a sole CCD camera located behind the

vehicle's forward-facing windscreen. The LWVDT algorithm's functioning is validated and assessed

utilizing a large number of stationary pictures and several real-time recorded videos. The assessment

findings reveal that the detection is fairly accurate and resilient, with only a minor inconsequential

divergence in one situation with complicated shadow patterns. The observed performance (running

time) utilizing a low-cost CPU demonstrated that the LWVDT is well-suited for real-time vehicle

detection even without the addition of additional processing capacity such as GPUs. Additionally, on

the KITTI dataset, the functioning of the LWVDT pipeline is compared to that of the most recent

deeplearning techniques. Deeplearning methods outperform LWVDT in terms of performance, but at

a far larger computing cost (fairly expensive GPUs). For low-end Processors, however, the LWVDT

real-time functioning confidently demonstrates that it is suitable for ADAS tasks or autonomous

automobiles. Future research will concentrate on improving the algorithm's detection and tracking of

people and bikers.

Author Contribution: All authors contributed equally to the main contributor to this paper. All authors read

and approved the final paper.
Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

References

[1] W. Farag, “Traffic signs classification by deep learning for advanced driving assistance systems”,

Intelligent Decision Technologies, vol. 13, no. 3, pp. 305-314, 2019, https://doi.org/10.3233/IDT-180064.

[2] W. Farag and Z. Saleh, "Road Lane-Lines Detection in Real-Time for Advanced Driving Assistance

Systems," 2018 International Conference on Innovation and Intelligence for Informatics, Computing, and

Technologies (3ICT), pp. 1-8, 2018, https://doi.org/10.1109/3ICT.2018.8855797.

[3] A. Zhirabok, A. Zuev, and K. Chung, "Virtual Sensors Design for Nonlinear Dynamic

Systems," International Journal of Robotics and Control Systems, vol. 3, no. 2, pp. 134-143, 2023,

https://doi.org/10.31763/ijrcs.v3i2.915.

[4] Z. Zainudin and S. Kodagoda, “Gaussian Processes-BayesFilters with Non-Parametric Data Optimization

for Efficient 2D LiDAR Based People Tracking,” International Journal of Robotics and Control Systems,

vol. 3, no. 2, pp. 206-220, 2023, https://doi.org/10.31763/ijrcs.v3i2.901.

[5] W. Farag, “A lightweight vehicle detection and tracking technique for advanced driving assistance

systems,” Journal of Intelligent & Fuzzy Systems, vol. 39, no. 3, pp. 2693-2710, 2020,

https://doi.org/10.3233/JIFS-190634.

[6] W. Farag, “Real-Time Detection of Road Lane-Lines for Autonomous Driving,” Recent Advances in

Computer Science and Communications, vol. 13, no. 2, pp. 265-274, 2020,

https://doi.org/10.2174/2213275912666190126095547.

[7] W. Farag and Z. Saleh, "An advanced road-lanes finding scheme for self-driving cars," 2nd Smart Cities

Symposium (SCS 2019), pp. 1-6, 2019, https://doi.org/10.1049/cp.2019.0221.

https://doi.org/10.3233/IDT-180064
https://doi.org/10.1109/3ICT.2018.8855797
https://doi.org/10.31763/ijrcs.v3i2.915
https://doi.org/10.31763/ijrcs.v3i2.901
https://doi.org/10.3233/JIFS-190634
https://doi.org/10.2174/2213275912666190126095547
https://doi.org/10.1049/cp.2019.0221

725
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 3, No. 4, 2023, pp. 704-727

Wael Farag (Finding and Tracking Automobiles on Roads for Self-Driving Car Systems)

[8] C. J. Manuel, M. Santos, G. G. Lenzi, and A. M. Tusset, "Longitudinal Modeling of a Road Vehicle: 4-

Wheel Traction," International Journal of Robotics and Control Systems, vol. 2, no. 2, pp. 357-369, 2022,

https://doi.org/10.31763/ijrcs.v2i2.698.

[9] F. Micheli, M. Bersani, S. Arrigoni, F. Braghin, and F. Cheli, “NMPC trajectory planner for urban

autonomous driving,” International Journal of Vehicle Mechanics and Mobility, vol. 61, no. 5, pp. 1387-

1409, 2023, https://doi.org/10.1080/00423114.2022.2081220.

[10] W. Farag and Z. Saleh, "Tuning of PID Track Followers for Autonomous Driving," 2018 International

Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), pp. 1-

7, 2018, https://doi.org/10.1109/3ICT.2018.8855773.

[11] B. B. Elallid, N. Benamar, A. S. Hafid, T. Rachidi, and N. Mrani, “A comprehensive survey on the

application of deep and reinforcement learning approaches in autonomous driving,” Journal of King Saud

University-Computer and Information Sciences, vol. 34, no. 9, pp. 7366-7390, 2022,

https://doi.org/10.1016/j.jksuci.2022.03.013.

[12] M. Nagiub, "Automatic selection of compiler options using genetic techniques for embedded software

design," 2013 IEEE 14th International Symposium on Computational Intelligence and Informatics

(CINTI), pp. 69-74, 2013, https://doi.org/10.1109/CINTI.2013.6705166.

[13] W. Farag and Z. Saleh, "An advanced vehicle detection and tracking scheme for self-driving cars," 2nd

Smart Cities Symposium (SCS 2019), pp. 1-6, 2019, https://doi.org/10.1049/cp.2019.0222.

[14] J. Wei, J. He, Y. Zhou, K. Chen, Z. Tang, and Z. Xiong, "Enhanced Object Detection With Deep

Convolutional Neural Networks for Advanced Driving Assistance," IEEE Transactions on Intelligent

Transportation Systems, vol. 21, no. 4, pp. 1572-1583, 2020,

https://doi.org/10.1109/TITS.2019.2910643.

[15] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti dataset,” The International

Journal of Robotics Research, vol. 32, no. 11, pp. 1231-1237, 2013,

https://doi.org/10.1177/0278364913491297.

[16] X. Hu, X. Xu, Y. Xiao, H. Chen, S. He, J. Qin, and P. -A. Heng, "SINet: A Scale-insensitive Convolutional

Neural Network for Fast Vehicle Detection," IEEE Transactions on Intelligent Transportation Systems,

vol. 20, no. 3, pp. 1010-1019, 2019, https://doi.org/10.1109/TITS.2018.2838132.

[17] Y. Xiao, “Vehicle detection in deep learning,” arXiv preprint arXiv:1905.13390, 2019,

https://doi.org/10.48550/arXiv.1905.13390.

[18] D. Vajak, M. Vranješ, R. Grbić, and N. Teslić, “A Rethinking of Real-Time Computer Vision-Based Lane

Detection,” 2021 IEEE 11th International Conference on Consumer Electronics (ICCE-Berlin), pp. 1-6,

2021, https://doi.org/10.1109/ICCE-Berlin53567.2021.9720012.

[19] B. E. Rogowitz, T. N. Pappas, and S. J. Daly, “Human Vision and Electronic Imaging XII,” Proceedings

of SPIE - The International Society for Optical Engineering, vol. 6492, 2007,

https://doi.org/10.1117/12.729071.

[20] S. K. Shevell. The Science of Color. Elsevier Science & Technology, pp. 202–206, 2003,

https://books.google.co.id/books?id=-fNJZ0xmTFIC&hl=id&.

[21] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” 2005 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR'05), vol. 1, pp. 886-893, 2005,

https://doi.org/10.1109/CVPR.2005.177.

[22] M. S. Kankanhalli, B. M. Mehtre, and H. Y. Huang, “Color and spatial feature for content-based image

retrieval,” Pattern Recognition Letters, vol. 20, no. 1, pp. 109-118, 1999, https://doi.org/10.1016/S0167-

8655(98)00100-7.

[23] S. Sergyan, “Color histogram features based image classification in content-based image retrieval

systems,” 6th International Symposium on Applied Machine Intelligence and Informatics, pp. 221-224,

2008, https://doi.org/10.1109/SAMI.2008.4469170.

[24] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, pp. 273-297, 1995,

https://doi.org/10.1007/BF00994018.

https://doi.org/10.31763/ijrcs.v2i2.698
https://doi.org/10.1080/00423114.2022.2081220
https://doi.org/10.1109/3ICT.2018.8855773
https://doi.org/10.1016/j.jksuci.2022.03.013
https://doi.org/10.1109/CINTI.2013.6705166
https://doi.org/10.1049/cp.2019.0222
https://doi.org/10.1109/TITS.2019.2910643
https://doi.org/10.1177/0278364913491297
https://doi.org/10.1109/TITS.2018.2838132
https://doi.org/10.48550/arXiv.1905.13390
https://doi.org/10.1109/ICCE-Berlin53567.2021.9720012
https://doi.org/10.1117/12.729071
https://books.google.co.id/books?id=-fNJZ0xmTFIC&hl=id&
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1016/S0167-8655(98)00100-7
https://doi.org/10.1016/S0167-8655(98)00100-7
https://doi.org/10.1109/SAMI.2008.4469170
https://doi.org/10.1007/BF00994018

ISSN 2775-2658
International Journal of Robotics and Control Systems

726
Vol. 3, No. 4, 2023, pp. 704-727

Wael Farag (Finding and Tracking Automobiles on Roads for Self-Driving Car Systems)

[25] X. Dai, “HybridNet: A fast vehicle detection system for autonomous driving,” Signal Processing: Image

Communication, vol. 70, pp. 79-88, 2019, https://doi.org/10.1016/j.image.2018.09.002.

[26] W. Farag, “Complex-Track Following in Real-Time Using Model-Based Predictive Control”,

International Journal of Intelligent Transportation Systems Research, vol. 19, pp. 112–127, 2021,

https://doi.org/10.1007/s13177-020-00226-1.

[27] C-. W. Hsu and C-. J. Lin, "A comparison of methods for multiclass support vector machines," in IEEE

Transactions on Neural Networks, vol. 13, no. 2, pp. 415-425, 2002, https://doi.org/10.1109/72.991427.

[28] W. A. Farag, V. H. Quintana, and G. Lambert-Torres, "Genetic algorithms and back-propagation: a

comparative study," Conference Proceedings. IEEE Canadian Conference on Electrical and Computer

Engineering (Cat. No.98TH8341), vol. 1, pp. 93-96, 1998, https://doi.org/10.1109/CCECE.1998.682559.

[29] W. Farag and A. Tawfik, “On fuzzy model identification and the gas furnace data,” in Proceedings of the

IASTED International Conference Intelligent Systems and Control, pp. 14-16, 2000,

https://www.researchgate.net/publication/228707650_On_Fuzzy_Model_Identification_and_the_Gas_F

urnace_Data.

[30] A. Kaehler and G. Bradski. Learning OpenCV 3: Computer Vision in C++ with the OpenCV Library.

O'Reilly Media, 2016, https://books.google.co.id/books?id=LPm3DQAAQBAJ&.

[31] “Python Pickle Module”, https://docs.python.org/3.1/library/pickle.html, retrieved on (24 Sept. 2022).

[32] Udacity vehicles data, https://s3.amazonaws.com/udacity-sdc/Vehicle_Tracking/vehicles.zip, retrieved

on (24 Sept. 2022).

[33] Udacity non-vehicles data, https://s3.amazonaws.com/udacity-sdc/Vehicle_Tracking/non-vehicles.zip,

retrieved on (24 Sept. 2022).

[34] GTI vehicle image database, http://www.gti.ssr.upm.es/data/Vehicle_database.html, retrieved on (24

Sept. 2022).

[35] The HOG feature descriptor, http://scikit-

image.org/docs/dev/auto_examples/features_detection/plot_hog.html, was retrieved on (24 Sept. 2022).

[36] SciKit-Learn StandardScaler Function, http://scikit-

learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html, retrieved on (24 Sept.

2022).

[37] Linear SVM Classifier Function, http://scikit-

learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html, retrieved on (24 Sept. 2022).

[38] K. B. Patel, H. C. Lin, A. D. Berger, W. Farag, and A. A. Khan, “EDC draft force based ride controller,”

US Patent 6,196,327, 2001, https://patents.google.com/patent/US6196327B1/en.

[39] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The Pascal visual object

classes (VOC) challenge,” International Journal of Computer Vision, vol. 88, no. 2, pp. 303–338, 2010,

https://doi.org/10.1007/s11263-009-0275-4.

[40] W. Liu et al., “SSD: Single Shot multi-box Detector,” in Computer Vision–ECCV 2016: 14th European

Conference, pp. 21–37, 2016, https://doi.org/10.1007/978-3-319-46448-0_2.

[41] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” in Proc. IEEE Conf. Computer Vision

and Pattern Recognition, pp. 7236–7271, 2017, https://doi.org/10.48550/arXiv.1612.08242.

[42] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with

Region Proposal Networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39,

no. 6, pp. 1137-1149, 2017, https://doi.org/10.1109/TPAMI.2016.2577031.

[43] Y. Liu, S. Cao, P. Lasang, and S. Shen, “Modular Lightweight Network for Road Object Detection Using

a Feature Fusion Approach,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no.

8, pp. 4716-4728, 2021, https://doi.org/10.1109/TSMC.2019.2945053.

[44] “Google Colaboratory”, https://colab.research.google.com/notebooks/welcome.ipynb, accessed on (5 Jan

2023).

https://doi.org/10.1016/j.image.2018.09.002
https://doi.org/10.1007/s13177-020-00226-1
https://doi.org/10.1109/72.991427
https://doi.org/10.1109/CCECE.1998.682559
https://www.researchgate.net/publication/228707650_On_Fuzzy_Model_Identification_and_the_Gas_Furnace_Data
https://www.researchgate.net/publication/228707650_On_Fuzzy_Model_Identification_and_the_Gas_Furnace_Data
https://books.google.co.id/books?id=LPm3DQAAQBAJ&
https://docs.python.org/3.1/library/pickle.html
https://s3.amazonaws.com/udacity-sdc/Vehicle_Tracking/vehicles.zip
https://s3.amazonaws.com/udacity-sdc/Vehicle_Tracking/non-vehicles.zip
http://www.gti.ssr.upm.es/data/Vehicle_database.html
http://scikit-image.org/docs/dev/auto_examples/features_detection/plot_hog.html
http://scikit-image.org/docs/dev/auto_examples/features_detection/plot_hog.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
https://patents.google.com/patent/US6196327B1/en
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.48550/arXiv.1612.08242
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TSMC.2019.2945053

727
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 3, No. 4, 2023, pp. 704-727

Wael Farag (Finding and Tracking Automobiles on Roads for Self-Driving Car Systems)

[45] J. Azimjonov and A. Özmen, “A real-time vehicle detection and a novel vehicle tracking systems for

estimating and monitoring traffic flow on highways,” Advanced Engineering Informatics, vol. 50, p.

101393, 2021, https://doi.org/10.1016/j.aei.2021.101393.

[46] Z. Liu, Y. Cai, H. Wang, and L. Chen, “Surrounding objects detection and tracking for autonomous

driving using LiDAR and radar fusion,” Chinese Journal of Mechanical Engineering, vol. 34, pp. 1-12,

2021, https://doi.org/10.1186/s10033-021-00630-y.

[47] M. Lin, J. Yoon, and B. Kim, “Self-driving car location estimation based on a particle-aided unscented

Kalman filter,” Sensors, vol. 20, no. 9, p. 2544, 2020, https://doi.org/10.3390/s20092544.

[48] A. Wischnewski, T. Stahl, J. Betz, and B. Lohmann, “Vehicle dynamics state estimation and localization

for high performance race cars,” IFAC-PapersOnLine, vol. 52, no. 8, pp. 154-161, 2019,

https://doi.org/10.1016/j.ifacol.2019.08.064.

[49] W. A. Farag and M. Abouelela, “Low-Cost Active Monitoring of Attendance using Passive RFID

Technology,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 8, no. 4, pp. 552-564, Dec.

2022, https://doi.org/10.26555/jiteki.v8i4.25168.

[50] S. Feraco, S. Favelli, A. Tonoli, A. Bonfitto, and N. Amati, “Localization Method for Autonomous

Vehicles with Sensor Fusion Using Extended and Unscented Kalman Filters,” SAE Technical Paper,

2021, https://doi.org/10.4271/2021-01-5089.

[51] Y. Jeong and S. Yim, "Model Predictive Control-Based Integrated Path Tracking and Velocity Control

for Autonomous Vehicle with Four-Wheel Independent Steering and Driving," Electronics, vol. 10, no.

22, p. 2812, 2021, https://doi.org/10.3390/electronics10222812.

[52] Z. Farkas, A. Mihály, and P. Gáspár, “Model Predictive Control Method for Autonomous Vehicles in

Roundabouts,” Machines, vol. 11, no. 1, p. 75, 2023, https://doi.org/10.3390/machines11010075.

[53] K. Mansour and M. ElHelw, “AiroDiag: A sophisticated tool that diagnoses and updates vehicles software

over air,” 2012 IEEE International Electric Vehicle Conference, pp. 1-7, 2012,

https://doi.org/10.1109/IEVC.2012.6183181.

https://doi.org/10.1016/j.aei.2021.101393
https://doi.org/10.1186/s10033-021-00630-y
https://doi.org/10.3390/s20092544
https://doi.org/10.1016/j.ifacol.2019.08.064
https://doi.org/10.26555/jiteki.v8i4.25168
https://doi.org/10.4271/2021-01-5089
https://doi.org/10.3390/electronics10222812
https://doi.org/10.3390/machines11010075
https://doi.org/10.1109/IEVC.2012.6183181

